UNRESTRICTED / ILLIMITÉE

Overview of Canadian R&D Capabilities to Support Advanced Reactors

Ms. Lori Walters CNL, Canada 20 March 2024

Canadian Nuclear | Laboratoires Nucléaires .aboratories | Canadiens

Some Housekeeping Items

Ŀ	Listen through your computer	Please select the "mic and speakers" radio button on the right-hand audio and pane display			
2	Technical Difficulties	Search the Go To Webinars Support: https://support.goto.com/webinar			
?	To ask a question	Select the "Questions" pane on your screen and type in your question			
	Share with others or watch it again	A video/audio recording of the webinar and the slide deck will be made available at <u>www.gen-4.org</u>			
Q	Please take the survey	A brief online survey will follow the webinar.			
Expertise	GENUE International Expertise Collaboration Excellence				

←

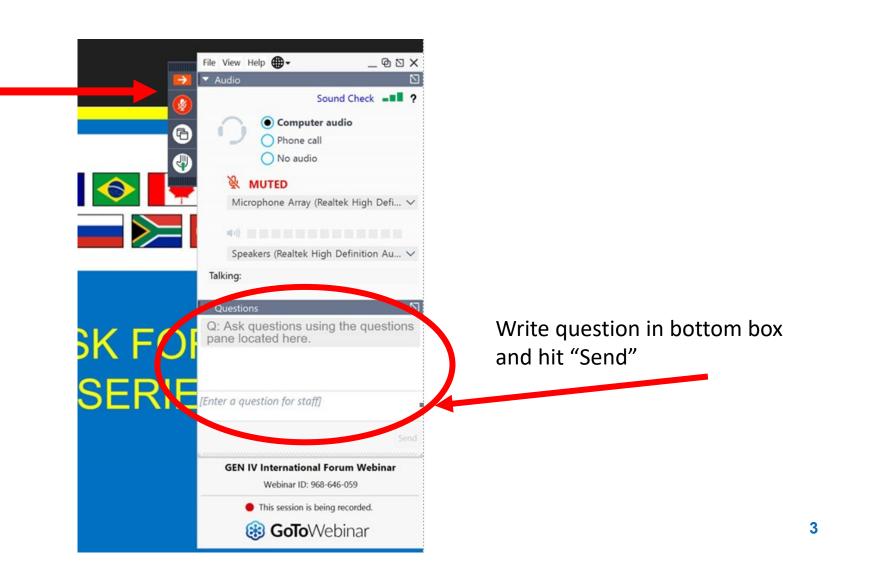
Ż

ß

J

To Ask a Question

To Open the


Control Panel

Go To

Webinar

Click Here

GENUX International Forum

Overview of Canadian R&D Capabilities to Support Advanced Reactors

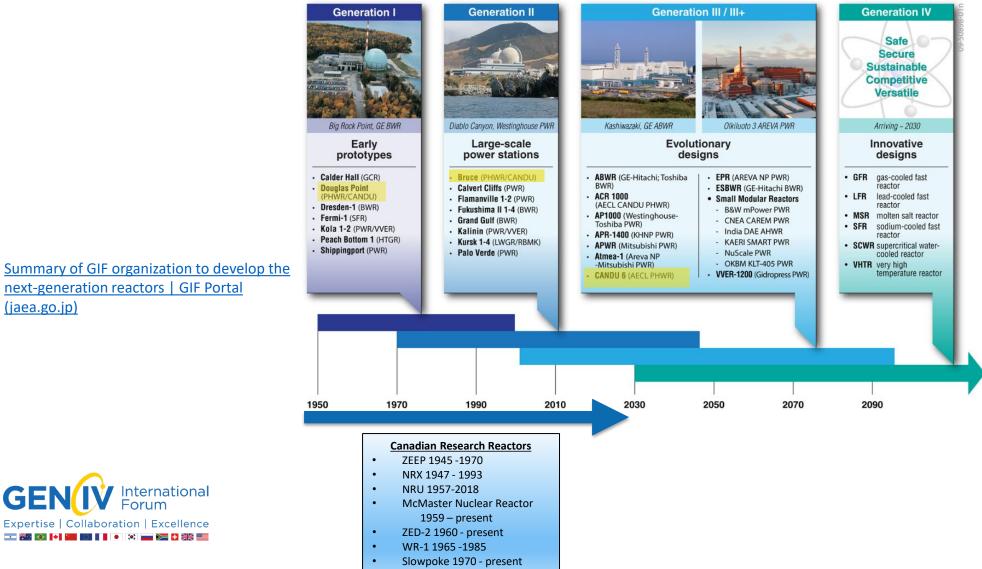
Ms. Lori Walters

CNL, Canada 20 March 2024

anadian Nuclear | Laboratoires Nucléaires aboratories | Canadiens

Meet the Presenter

Ms. Lori Walters is currently the Manager of the Advanced Reactor Materials & Chemistry Branch at Canadian Nuclear Laboratories (CNL) where she is responsible for a team of 30 scientists, engineers and technologists who focus on materials and corrosion testing under CANDU and advanced reactor conditions including supercritical water, high temperature gas and molten salt environments.


Lori has been with AECL/CNL since 1995 providing technical and programmatic leadership on both CANDU technologies and GENIV systems.

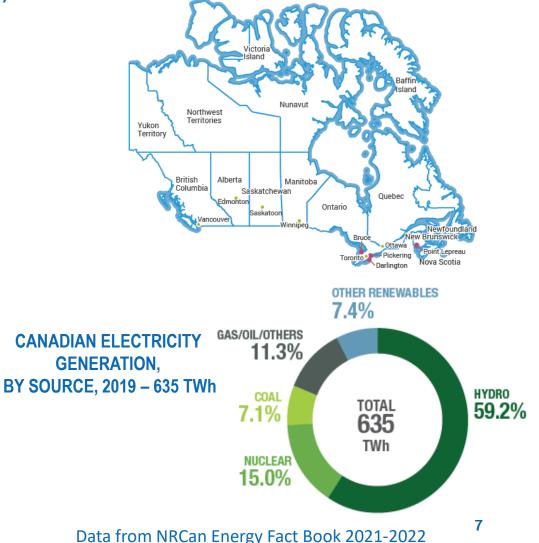
Lori studied Mechanical Engineering at the University of Manitoba and during her time at CNL has established technical expertise in the areas of irradiation deformation and damage of in-core materials, materials performance, and incore testing.

Nuclear in Canada

Summary of GIF organization to develop the next-generation reactors | GIF Portal (jaea.go.jp)

GEN(IX

6


Net-Zero Challenge in Canada

Goal: net-zero emissions by 2050, with a net-zero electricity grid by 2035

- About 75% of Canada's energy still comes from fossil fuels, multitude of low-carbon power sources required to serve Canadian residential, commercial, transportation and industrial sectors
- Canadian grid is already fairly "green", but large-scale electrification essential to achieve net-zero by 2050
- **Transportation decarbonisation**: likely battery electric for light-duty vehicles, but hydrogen fuel cells are a good fit for large vehicles and/or high duty cycle applications, synthetic and clean fuels
- Industrial decarbonisation: renewables such as solar and wind, do not produce industrial heat, only electricity. Canada needs energy solutions not just electricity, heat demand in the winter is 2-3 times that of electricity in northern Canada.
- No single technology can achieve our goals. Nuclear energy is part of solution for achieving these objectives. Success will require an "all options" approach, necessitating the use of hybrid and integrated energy system.

nternational

ise | Collaboration | Excellence

Potential Markets in Canada

Transmission infrastructure illustration – Tetra Energy

Grid Power

- Canada's electricity total 635 TWh in 2019, held steady
- Forecasted demand as high as 2-3 times demand by 2050

Illustration of industry - https://afry.com/

Industrial Processes

- Oil sands
- Mining
- Hydrogen production

Canadian remote communities - NRCan

Remote Communities

- 81% primarily diesel energy supply
- 92% of communities below 10MW_e

Three Streams of SMR Development in Canada

Illustration of GE Hitachi BWRX-300 - https://bindustry.eu/

Gen-III Grid-Scale

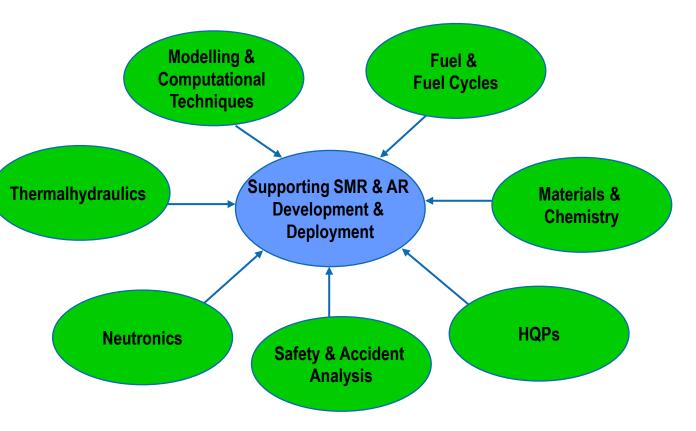
 BWRX 300 for Ontario Power Generation and SaskPower deployment

Illustration of Moltex SSR-W – moltexenergy.com

Gen-IV reactors

- ARC-100 partnering with New Brunswick Power
- Moltex SSR-W partnering with New Brunswick Power
- X-Energy and OPG have a framework agreement
- StarCore Nuclear and Terrestrial Energy IMSR applied to CNL demonstration

Illustration of Westinghouse eVinci – brucepower.com


Micro-Reactors

- USNC GFP MMR[®] applied to CNL demonstration
- USNC GFP MOU with McMaster to study deployment of MMR
- Westinghouse eVinci[™] MOUs with Bruce Power and Saskatchewan Research Council

Canadian Capabilities to Support SMRs & Advanced Reactors

Presentation Overview

- 1. Key facilities/capabilities at Canadian labs and universities
- 2. Application of R&D capabilities for SMR and advanced reactor systems:
 - Advanced Water-Cooled Reactors
 - Molten Salt Reactors
 - High-Temperature Gas-Cooled Reactors
 - Sodium Fast Reactors
 - Microreactors

How Canada is Enabling SMRs & Advanced Reactors

Federal Government

- SMR Action Plan in 2020 November as a follow-up to the 2018 SMR Roadmap
- Canadian Nuclear Safety Commission (CNSC) pre-licensing vendor design review of 12 SMRs
- Funds available to support nuclear sector via Canada Infrastructure Bank, Strategic Innovation Fund, Electricity Predevelopment Program and Future Electricity Fund

Provincial

- Feasibility Report 2021
- Summarizes business case for SMR implementation in each of the provinces Ontario, New Brunswick and Saskatchewan
- Strategic Plan 2022
- Ontario, Saskatchewan, New Brunswick, Alberta
- Identified five priority areas for SMR development and deployment: Technology readiness, Regulatory framework, Economics and financing, Nuclear waste management, Indigenous and public engagement

SMR ACTION PLAN: Federal Government, Provinces and Territories, Indigenous, Municipalities, Power Utilities, Civil Society and Education Academia and Research, Industry Associations, Heavy Industry, Supply/Value Chain, SMR vendors

https://smractionplan.ca/

How Canada is Enabling SMRs & Advanced Reactors

AECL Federal Nuclear Science & Technology Work Plan

- Helps build a framework for SMR development & deployment in Canada
- Severe accidents, waste, thermalhydraulics, physics, passive safety, fuel, safeguards, reactor operations, and materials research
- Initial efforts were on technology agnostic research but shifting towards targeted research

Government R&D Funding Opportunities

- NRCan Enabling SMR Program: R&D to address waste generated from SMRs and to develop Canadian supply chains for SMR manufacturing and SMR fuel supply.
- NRCan-NSERC Partnership Program
- NSERC-CNSC Small Modular Reactors Research Grant Initiative

Education

UNENE – University Network of Excellence in Nuclear Engineering

The network advances *nuclear knowledge*, builds *capacity* and heightens *visibility* of Canada's university excellence

GENUX International Forum Expertise | Collaboration | Excellence

Stronger together for Canadian innovation

UNENE is a network of Canadian universities, industry, government and international institutions dedicated to excellence in nuclear science, technology and engineering

With its **partners** and **funding organizations**, UNENE works to advance nuclear knowledge, build capacity and heighten visibility of Canada's strength as a global partner, and to elevate the role of nuclear in advancing global sustainability, prosperity and a clean energy

University Members

University of NewUnivBrunswickUnivMcMaster UniversityUnivOntario TechWesUniversityUnivQueen's UniversityUnivRoyal Miliary CollegePolyOf CanadaInteUniversity of GuelphInte

University of Toronto University of Waterloo University of Windsor Western University University of Regina University of Saskatchewan Polytechnique Montreal International University

Member Universitatea Politehnica din Bucuresti **Industry Members**

CANDU Owers Group

Organization (NWMO)

Nuclear Waste Management

Ontario Power Generation

Clean Core Thorium Energy

Bruce Power

Kinectrics

Atkins-Réalis

Government Members

Natural Resources Canada

Canadian Nuclear Safety Commission

Canadian Nuclear Laboratories

13

Canada's Nuclear R&D Infrastructure to Support SMRs & Advanced Reactors

More than 50 unique facilities and labs, several licensed nuclear facilities

- Materials & fuels testing and characterization (active and in-active)
- Corrosion loops
- Safety & thermalhydraulics
- QA Program

CanmetMATERIALS

Core strengths: Materials science & unique facilities

- Advanced electron microscopy
- Corrosion assessment
- Stress corrosion cracking/corrosion fatigue
- Materials property assessment
- Alloy development

Kinectrics

Global Organization

- Ontario Hydro Research precursor to Kinectrics
- Licensed facilities
- Material & nuclear component testing
- Nuclear Engineering design
- Licensing & Safety
- QA Program

www.kinectrics.com

(Some of) CNL's Unique Facilities

Advanced Nuclear Materials Research Centre (under construction)

- 125,000 square foot space
- 12 hot cells and 23 laboratories
- Will complement current hot cell facilities dating back to the 1950s

High Temperature Fuel Channel Laboratory

 Heat transport systems under postulated accident scenarios involving insufficient primary and/or secondary emergency cooling

Thermalhydraulics Laboratory

- Single, two-phase, multicomponent flow and heat transfer
- Natural and forced circulation Simple and complex geometries up to 1.7 MW power

How CNL is Enabling SMRs & Advanced Reactors

SMR Demonstration Siting

Hosting a demonstration SMR on a CNL-managed site

Clean Energy, Demonstration, Innovation, and Research (CEDIR) Initiative

Advancing technology readiness via a demonstration platform for clean energy systems and adjacent technologies

Hybrid Energy System Optimisation (HESO)

NUCLEAR

DIESEL

NATURAL GAS

costs, fuel cost heat rate, ramp

emissions

STORAGE BESS, PHSS, HPSS

DIESEL/BIOFUEL costs, fuel cost,

heat rate, ramp rate

COAL

costs, fuel cost

heat rate, ram

TESS costs rou

一人

HESO

ow rate, efficiency

OMASS

s, fuel cos

sts, wind speed.

SOLAR PV

OLAR CONC

osts, insolatior

ication emission

Advancing knowledge through modelling, simulations, and experiments

USNC's vision of its MMR concept https://www.world-nuclear-news.org/


Canadian Nuclear Research Initiative (CNRI)

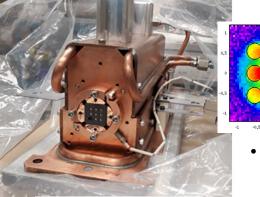
Working with commercial companies to apply CNL's nuclear capabilities to technical challenges

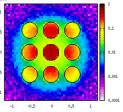
Fuel, physics, environment, reactor operations, safeguards, and materials

GEN IV International Forum Irradiation Facilities

Queens University Reactor Materials Testing Lab

- Accelerator to emulate irradiation damage / transmutation
- Combined irradiation damage and stress ٠
- Combined irradiation damage and environment




McMaster Nuclear Reactor & Centre for Advanced Nuclear Systems

- MNR 3 MW with a maximum thermal neutron flux of $1x10^{14}$ n/cm²s, open-pool type Materials Test Reactor
- **CANS** a suite of post irradiation examination capabilities and new test equipment
- High Level Laboratory Facility -CNSC licensed laboratories with hot cells and equipment capable of handling highly radioactive materials
- Cyclotron facility, Accelerator lab

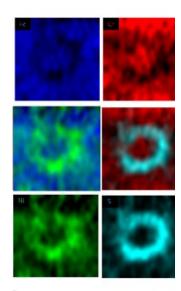
% TRIUMF

TRIUMF - Canada's Particle Accelerator Centre

- ISAC parasitic materials irradiation stage
- 500 MeV with intensity of proton beam between 4X10² to 4X10⁷ protons/cm²/s.

CNL Zero Energy Deuterium Reactor

- Zero power heavy water moderated tank-type reactor
- **Power:** up to ~200 W (thermal)
- Flexibility: operate with new fuels/coolants/materials as required

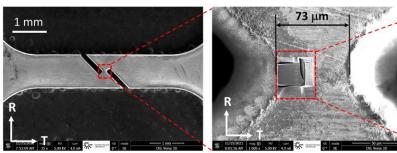


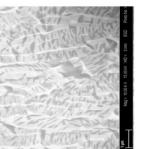
GEN IV International Forum Characterization Facilities

McMaster University Canadian Centre for Electron Microscopy

Canadian Light Source

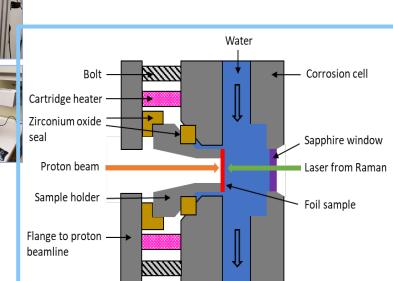
- Canada's synchrotron
- Canadian Centre canadien Light de rayonnement Source synchrotron
- X-ray imaging has proven extremely useful for imaging the microstructure of composite materials
- Faster than conventional techniques
- In-situ imaging of defects, damage, stress




SURFACESCIENCEWESTERN Western

CNL – Laser Fabrication and Characterization

Precision small-scale mechanical test specimens including neutron irradiated specimens


Laboratories

Laboratoires Nucléaires 18 Canadiens

Corrosion Facilities

🖉 MTL 🕅

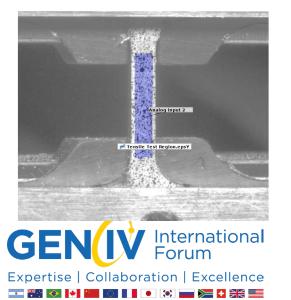
Queen's In-situ Irradiation Corrosion Facility

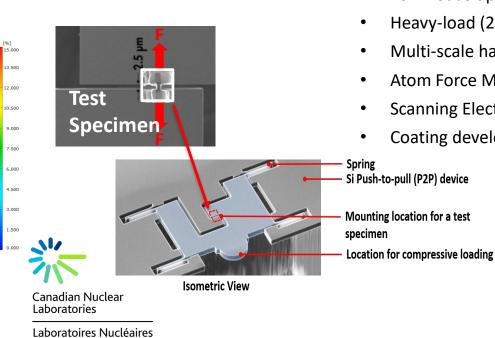
• Combined irradiation damage and environment, in situ irradiation-corrosion

leen's

University of New Brunswick Centre for Nuclear Energy Research

- Water chemistry control and corrosion detection, monitoring
- Eight registered high-pressure/temperature water loops
- Full suite of surface science analysis and analytical chemistry


UNB-CNER Advanced Nuclear Reactors Laboratory:


- New molten salt lab under construction:
 - Glovebox facilities for salt preparation and quantification
 - o Thermal and physical property measurements
 - Corrosion assessment
 - New sodium lab and test loop

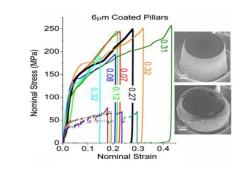
Mechanical Property Assessment

Canadiens

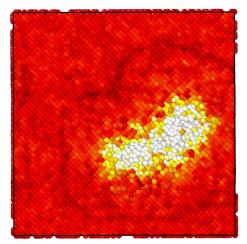
- Charpy impact
- Drop weight tear
- Tensile/Compression
- **Fracture mechanics**
- Creep and Fatigue up to 950 °C
- Stress and/or strain controlled
- Rotating bend
- Multi-scale mechanical testing (micro-tobulk), tensile, fracture toughness
- High Temperature (850°C) nanoindentation (ex-situ & in-situ)

Canada

Natural Resources Canada

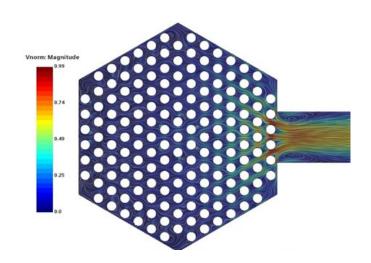

University 🚟 **Materials Property Assessment Lab**

- Nano/micro-scale indentation, scratch, impact, fatigue (-30 to 1200°C)
- Micro and macro scratch & wear testing for coating adhesion
- Tribometer Industry standard for measuring friction, wear & lubrication
- Heavy-load (2000N), HT (1000°C) tribometer .
- **HT Universal Testing System**
 - -70°C to 1500°C 0



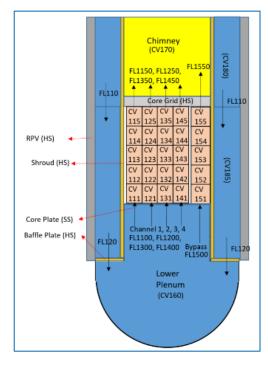
McMaster

- Loads up to 250 kN Ο
- Heavy-load (2000N), HT (1000°C) tribometer
- Multi-scale hardness tester (10g 60kg)
- Atom Force Microscope
- Scanning Electron Microscope, Optical Microscopes
- Coating development (hybrid PVD coater) and evaluation


20

Multi-Scale Materials

- Primary defect production atom-byatom
- Predict (transmutation) He bubble nucleation and growth
- Nearly-unique ability to simulate aging over timescales of ~seconds with atomistic resolution (accelerated dynamics)


Development of Coupled Code Suite for SMRs

- CNL is developing multi-physics modelling capabilities for modelling non-water cooled SMR concepts
- Coupled code suite included three disciplines: CFD, System TH and Neutronics
- Collaboration with US-DOE
- Development of TH (ARIANT) and Physics (OpenMC) codes for SMR applications

Severe Accident Modelling

- Modelling of various generic SMR designs using the MELCOR code
- Water-cooled (iPWR, small BWR) and advanced (HTGR, and soon SFR)

Fuel Fabrication & Advanced Materials Development

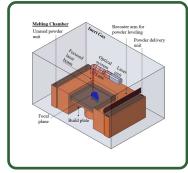
CNL - Fuel Fabrication

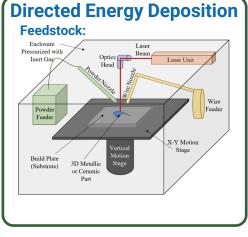
- Conventional fuel fabrication processes
- Advanced fuel fabrication methods (SPS)
- Advanced manufacturing techniques, 3D printing of uranium and thorium filament materials

Queens - ODS Ni-based alloys

- Ni-15Cr-4Al-3W-0.8Hf-1Y₂O₃
- HIP: 1100°C, 4hr, 140 MPa
- Heat Treatment
 - Solution heat treated: 1100°C, 4hr, a/c

Jueen's


• Aging: 800°C, 3hr, a/c


CMAT – Vintage HT-9 and HEAs

- Alloy was tested in EBR-II in liquid sodium fuel
- Potential fuel cladding for SFR
- Very difficult to process to avoid delta phase formation
- Collaboration with CNL to develop HEAs FeCrMnNi – irradiation & mechanical testing

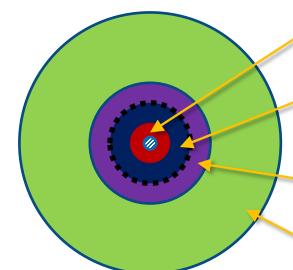
Powder Bed Fusion

Heat source: Laser or Electron Beam Heat source: Laser or Electron Beam or Gas Arc

Alberta Next-Generation Additive Manufacturing Research Laboratory

 Collaboration to develop high-temperature corrosion-resistant functionally graded material structures fabricated using state-ofthe-art additive manufacturing solutions

Safety & Security


Cyber Security for Remote SMRs and Wireless Sensor Networks

State-of-the-art, safe, secure and realistic cyber security research, training and exercise environment for nuclear and other critical infrastructure. Representative physical separation for incident response exercises:

- nuclear security operators
- field operations & maintenance
- control room operations
- cyber security operations
- lead controllers/evaluators, and observers

SMR Emergency Planning and Response Optimization

Security

Safety

Safeguards

Automatic Action Zone (AAZ): Aim to prevent deterministic health effects. (IAEA analog is precautionary action zone, PAZ) Detailed Planning Zone (DPZ): Aim to reduce stochastic health effects. (IAEA analog is urgent action zone, UPZ)

Limit of "EPZ" per IAEA definition

Contingency Planning Zone (CPZ): <u>Aim to reduce</u> <u>chance of exposure</u>.

(IAEA analog is extended planning distance, EPD) **Ingestion Planning Zone (IPZ):** Aim to restrict the distribution of potentially contaminated products. (IAEA analog is ingestion and commodities planning distance, ICPD)

Proliferation Resistance and Physical Protection

- Safety & security (sabotage)
- Safety & safeguards (diversion, misuse)
- Safeguards & security (theft)

International

How Canada is Enabling SMRs & Advanced Reactors

International Collaborations – GIF, NEA, IAEA, EU

SCWR

- System Steering Committee
- Thermalhydraulics & Safety
- Materials & Chemistry

MSR

٠

- Provisional System Steering Committee
- Fuel & Coolant Salt Chemistry
- System Integration PA

SAM SAFER

VHTR

- System Steering Committee
- Materials
- Hydrogen
- Fuel and Fuel Cycles (observer)
- Computational Methods Validation and Benchmarks (observer)

NEA Working Groups

- Economic Modelling, Proliferation Resistance and Physical Protection,
- Risk and Safety and, Advanced Manufacturing and Material Engineering Task Non-Electric Applications of Nuclear Heat Task Force

ise | Collaboration | Excellence

IAEA Contributions

- Co-Authors of TECDOCs under review
- Participating/Leading new CRPsNHSI Industry Track

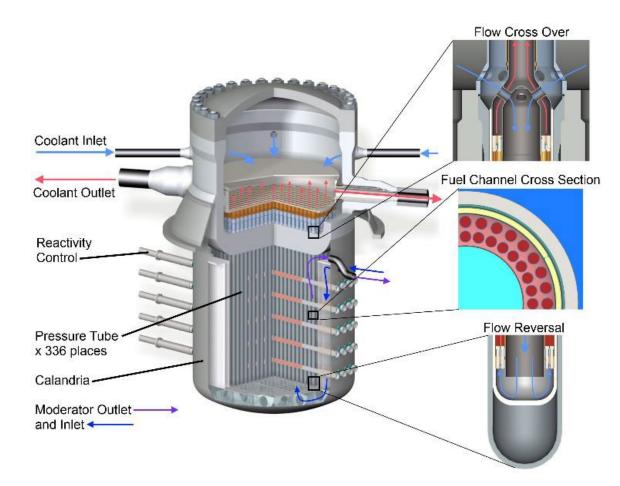
Bi-Laterals

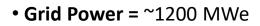
- Canada US; Canada UK
- AECL and CNL MOUs with laboratories and academia

Canada's Gen IV National Program

Officially launched in 2006

- Development of SCWR systems through participation in GIF multilateral R&D collaborations
- R&D for non-greenhouse-gas-emitting hydrogen production technologies using nuclear energy •
- Establishment of new national capabilities and capacities .
- Undertaking basic/fundamental research to support and direct the development of a conceptual SCWR design


- 5 Federal Laboratories (CNL, NRCan, NRC) •
- Over 800 presentations and conference . proceedings
- Over 300 technical reports ٠
- Over 350 peer-reviewed publications ٠
- Over 400 HQP trained 5 patents .
- New facilities (Universities & Federal Laboratories) •
- Enhancing the R&D capabilities of federal ٠ laboratories and universities
- Development of databases and models ٠
- International Collaborations GIF participants •



Wealth of knowledge developed through modelling and experiments

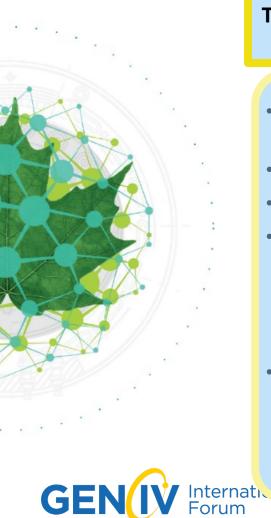
Canadian SCWR Concept Schematic

- **Operating Life** = 75 Years
- Direct cycle No steam generators, no

steam separators

• 336 fuel channels at 25 MPa

Inlet temperature at 350 °C
Outlet temperature at 625 °C


• Fuel channels

Zirconium alloy pressure tubeZirconia insulator

- Inside diameter = 5.5 m
- Low-pressure calandria at ~0.3 MPa
- Thorium-13%Plutonium fuel (Ref),
 - Enriched UO₂ fuel is possible.

Super Critical Water-Cooled Reactor Summary

Expertise | Collaboration | Excellence

Thermalhydraulics & Safety	Materials	Mechanical components
 Subchannel analysis CFD Flow instability Heat transfer and hydraulic resistance under SC conditions Safety analysis 	 Pressure boundary system design Corrosion of cladding materials Coupling of fluid mechanics, thermodynamics of reactions and mass transfer with corrosion 	 FE analysis Mechanical design Joining techniques such as co-extrusion and friction welding Heat transfer through complex geometries 3D printing of advanced

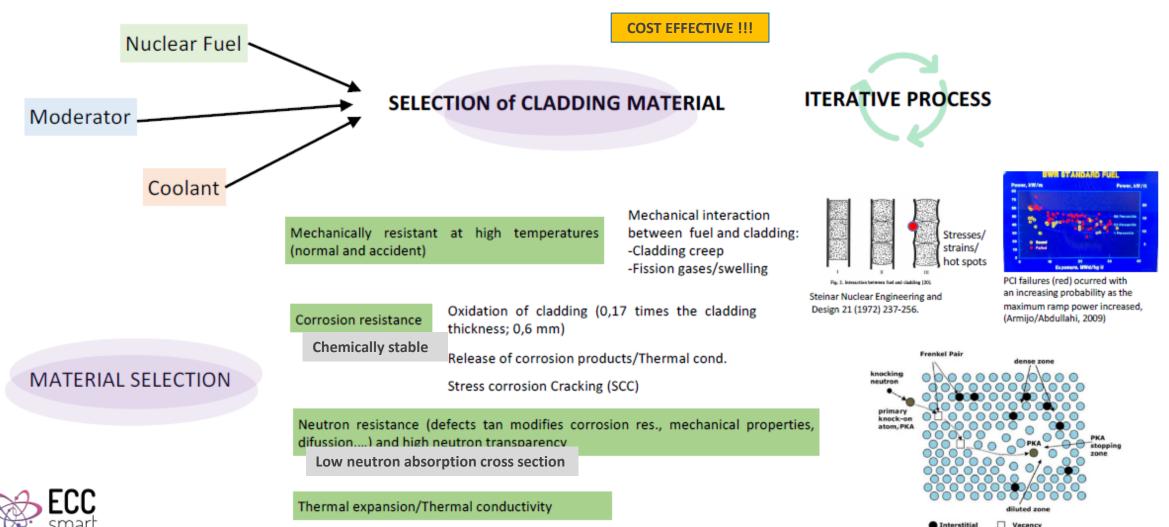
metallic

insulators

Reactor Physics

Full core analysis using Monte-Carlo method

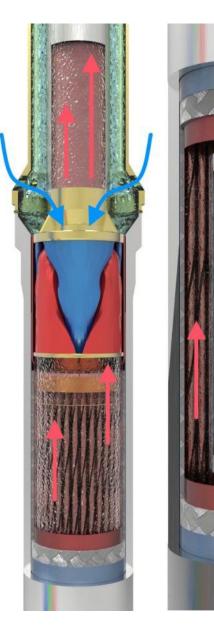
Fuel & Fuel Assembly


- Welding techniques
- Reference fuel selected to GIF goals (sustainability and non-proliferation)

Economics

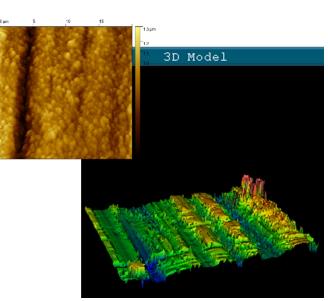
Modelling using G4ECONS software

27


Multidisciplinary Approach for SCWR R&D

Thermalhydraulics and Safety

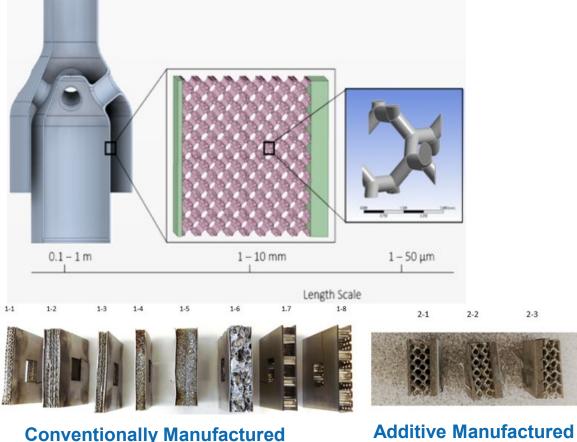
- Several international collaborations working on ٠ SCWRs R&D
 - GIF SCWR Thermalhydraulics and Safety PMB ٠
 - ECC-SMART Project ٠
 - IAEA CRP ٠
- Close knowledge gaps and provide basis for the ٠ prototyping of SCWRs
- Heat transfer and hydraulic resistance under SC • conditions, flow instability, CHF near the critical point



ECC

Materials and Chemistry

- Long-term exposure of cladding candidates to supercritical water conditions
- Large database of experimental data. Several domestic and international institutions are contributing to this database
- Performing mechanical, irradiation and oxidation tests on the sample coupons



Passive Safety - Conduction

Modified Divided Bar Test Apparatus

Conventionally Manufactured Samples

Additive Manufactured Samples

Measurement of Thermal Conductivity of Metallic Based Insulators

- Samples developed in collaborations between CNL and Canadian universities
- Conventional samples are stainless steel plates with corrugated foam/wire mesh structures
- 3D printed metallic gyroid lattice structure.

Molten Salt Research Summary

Thermophysical Properties

- Salt preparation
- Salt heat capacity via DSC measurements
- Salt thermal diffusivity via laser flash

measurements

- Fuel salt synthesis
- Fission project behaviour and release
- Fission product chemistry

Materials & Corrosion

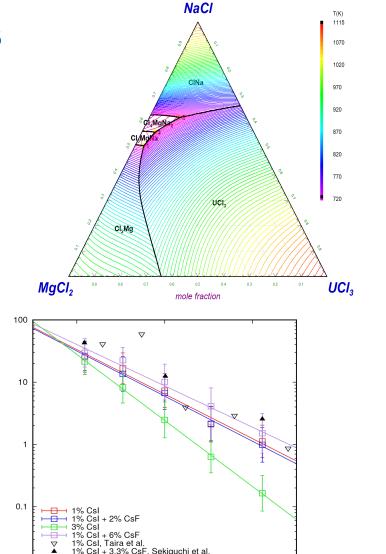
- Corrosion
- Static and dynamic loops
- Several materials:
 - o SS 316
- Grade 91
 steel
 - Hastelloy N
- Alloy 242 Activity
- transport

Thermalhydraulics

Molten salt natural circulation heat transfer

- Instrumentation
 testing
- Self-heating fluid testing
- CFD simulations

Molten Salt Thermophysical Properties



Experiments & Modelling of Fuel Salts

- Calphad calculations
- Molecular dynamics simulations
- DFT calculations
- Finite Element Analysis

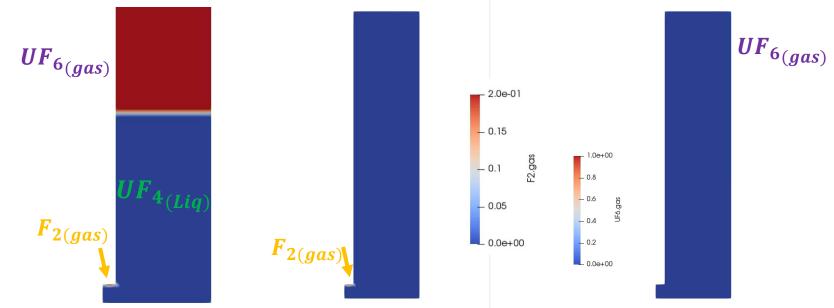
- Fuel-salt synthesis
- Molten salt encapsulation
- High temperature DSC (T_m, C_p, ...)
- Laser flash apparatus (thermal diffusivity)
- XRD for phase identification
- TGA for thermal stability
- ICP-OES for composition
- LECO for oxygen analysis

C. Maxwell, Journal of Nuclear Materials 563 (2022): 153633

Calculated partial pressure of CsI above FLiNaK with solvated concentrations plotted against inverse temperature.

0.0009

0.001


0.0011

Pressure, Pa

0.01

33

Molten Salt Thermophysical Properties & Safety

Fission Product Chemistry

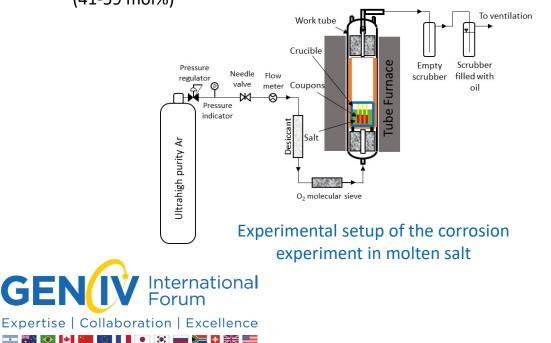
K. Lipkina, K. Palinka, E. Geiger, B.W.N. Fitzpatrick, O.S. Valu, O. Benes, M.H.A. Piro, J. Nucl. Mater., 568 (2022) 153901.

N. Scuro, O. Benes M.H.A. Piro, Annals of Nuclear Energy, in-press (2023).

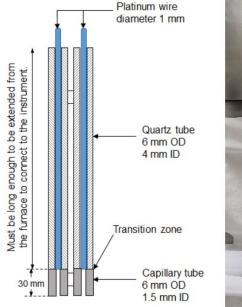
Multi-Physics Simulations

- Coupled CFD with Computational Thermodynamics so that chemically reacting flow with phase transformations could be simulated in an MSR for reactor safety analyses
- Fluorinating gas injected at the bottom of a cylinder containing irradiated fuel salt (i.e., UF4 + coolant + fission products)

https://doi.org/10.1016/j.anucene.2023.110327



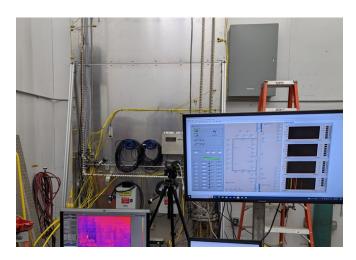
GEN


Materials in High Temperature Molten Salt Environment

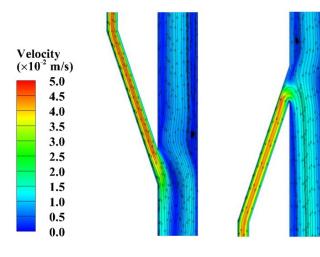
- High temperature molten salt corrosion test capability long-term Demonstration Natural Corrosion Loop operation with rigorously controlled salt chemistry (SS 316L exposed to chloride binary salt mixture)
- Corrosion products released from SS 316L, Alloy 242, and Alloy N at ٠ 800 °C were determined in KCl-MgCl₂ (61:39 wt%) through immersion test (72 h) in Ar
- Development of electrical conductivity equipment using Pt-wire probe as electrodes and testing at 550 °C in KCl-LiCl (41-59 mol%)

Methodology for salt sampling, salt chemical analysis, loop decommission and sectioning, characterization of corroded samples and components

Pt wire-probe


35

Passive Safety Molten Salt Natural Circulation Heat Transfer Loop


- Simplification of a single loop in the Direct Reactor Auxiliary Cooling System
- Main loop is 2 m tall
- Operate at ~550°C

Construction

- 316 Stainless steel
- Instrumented with fibre-optic sensors, capacitance sensors, thermocouples, ultrasonic flow sensors

ISSN:0029-5639

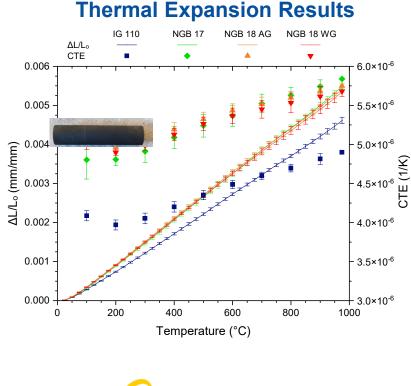
Testing

- Instrumentation effectiveness
- Changes in geometry due to aging
- Data for benchmarking models e.g. CFD and System Code simulations

Very/High Temperature Gas Reactor Research Summary

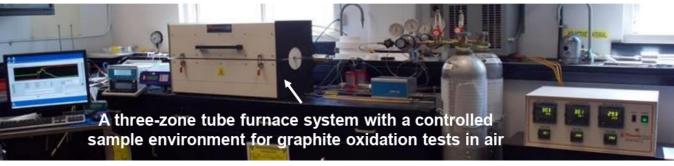
Materials	Thermalhydraulics & Safety	Fuel & Fuel Cycles
 Graphite Thermal properties Oxidation 	 Passive safety - thermal radiation Air ingress experiments 	 Fuel fabricatio NDE Modelling Mechanical
High temperature materials testing • Fatigue • Creep	 Severe accident and system thermalhydraulics modeling 	testing Irradiation Hydrogen
 Weldments In air and impure He enviroment Atomistic modelling Corrosion in impure He environment 		 Cu-Cl Cycle High temperative steam & CO₂ electrolysis

Fuel fabrication

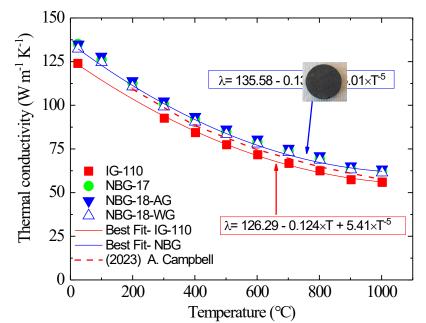

- NDE
- Modelling
- **Mechanical** testing
- Irradiation

Hydrogen

- Cu-Cl Cycle
- High temperature steam & CO₂ electrolysis


Graphite

Baseline Thermal Properties of Selected Nuclear Grade Pristine Graphite



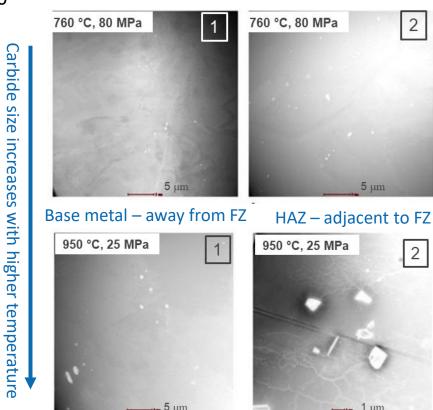
Graphite Oxidation Behaviour

Thermal Conductivity Results

- Thermal properties degradation with oxidation weight loss in air at 550°C
- TGA oxidation experiments of IG-110 & NBG-18
- Thermal oxidation in dry air oxidation at 550 °C in horizontal tube furnace


Very High Temperature Materials Testing

Microstructural Stability and Deformation Mechanisms


size

temperature

Alloy 800H Weldment with Haynes 230 Filler Metal - Microstructure after Creep at 760 and 950 °C

2

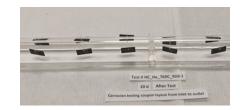
2

Carbide size increases when closer to the fusion zone

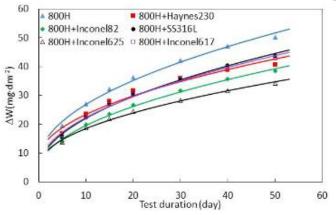
High Temperature (HT) Creep Rigs

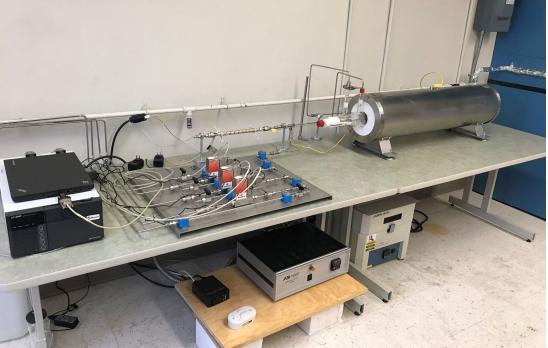
HT Creep Rigs with Environmental Chamber

Corrosion Effects in HTGRs


CNL - tests at 760 °C, with purified helium gas, helium gas mixture with 5 ppm H_2O , 50 ppm CH_4 by volume at test duration of 5, 10, 20, 50 days

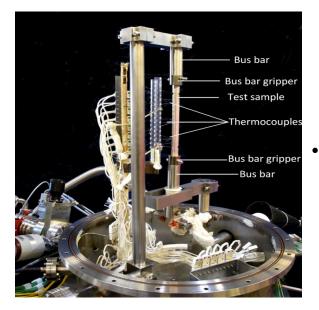
Horizontal quartz-tube furnace



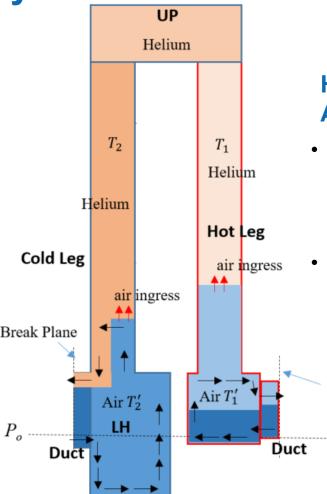


Sample holder and coupons

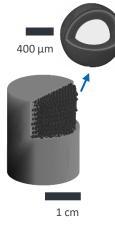
He with 5 ppm H₂O, 50 ppm CH₄

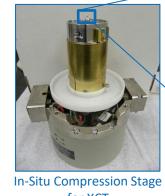


In addition to using the accelerator to generate radiation damage, exposure can be performed in high temperature mixed-gas reactors


High Temperature Gas Reactor Safety

Passive Safety Thermal Radiation


- Certain small HTGR concepts decay heat removal driven by:
 - Thermal radiation and conduction mechanisms within the reactor vessel or containment
 - Natural circulation outside the reactor vessel.
 - Apparatus measures:
 - Emissivity at high temperature conditions in the range of 1400 to 1600°C
 - Non-metallic samples
 - Setting up to commission apparatus with graphite specimens.



HTGR Air Ingress

- Design of scaled
 experimental
 apparatus to study air
 ingress in HTGRs
- Onset of natural circulation of air through the core region in a postulated HTGR primary circuit break

TRISO Fuel Research

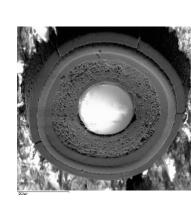
for XCT

X-ray Computed Tomography (XCT)

- XCT has non-destructively imaged asfabricated surrogate TRISO particles and compacts, elucidated the different buffer, IPyC, SiC, and OPyC layers
- Elevated temp XCT in-situ compression stage to determine the failure strength and particle failure behavior

O

 \bigcirc


 \bigcirc

 \odot

0

Specimen Assembly in **Graphite Irradiation Rig**

Microscopy and Nano-indentation

- Microstructure examination to determine high-temp mechanical properties of SiC layer and interface characteristics
- Hardness & elastic modulus property testing is ongoing at room temp. and up to 500°C by nanoindentation

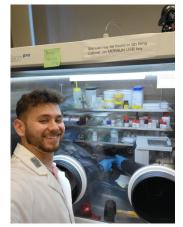
High-Energy Proton Irradiations

Investigation of high-temp proton irradiation at TRIUMF on the integrity of surrogate TRISO fuel, specifically SiC layer behaviour

Surrogate **TRISO particle**

Development of Fretting-Wear Testing

- Impact fretting wear testing in a Helium environment at 700°C
- Study effects of interface geometry, ٠ material pairing, process conditions, and vibration conditions


Fabrication

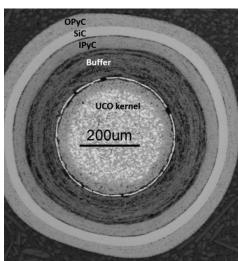
- Spark Plasma Sintering to fabricate compacts containing surrogate TRISO particles
- Preliminary effort to sinter graphitic matrix material has produced compacts above 80% of the theoretical density of graphite
- Pellet imaged had a density of 1.766 g/cm^3
- Characterization with XCT and **SEM-EDS underway** 42

TRISO Fission Product and Fuel Performance

CAK RIDGE National Laboratory

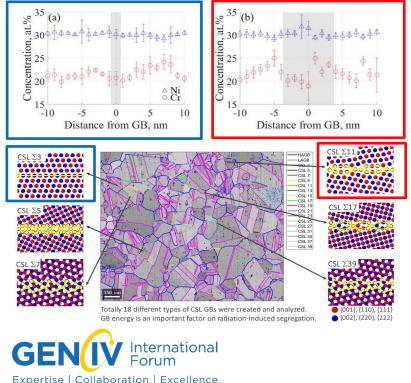
OntarioTech

Before




Fission Product Solubility Experiments

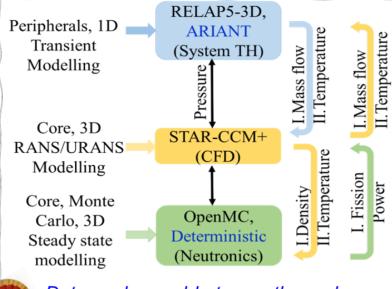
R. Varga, MASc Thesis, Ontario Tech, Oshawa, Canada, in-preparation.



B.W.N. Fitzpatrick, M. Poschmann, T.M. Besmann, S. Simunovic, M.H.A. Piro, CANDU Fuel Conference (2022).

Modelling Materials Modelling

Molecular Dynamics (MD) modelling to reproduce various grain boundaries (GBs) from experiments.


Elements segregation at grain boundary

- 👬 💽 🙌 🕮 📖 🚺 🔹 🗰 🔚 🔀

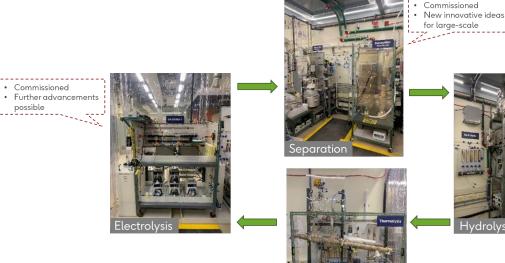
Neutronics/Thermalhydraulics

- Coupled codes
- ARIANT/RELAP5-3D/CFD/OpenMC

Data exchanged between the codes

Fuel Modelling

- Impact of fabrication parameters and on QC requirements
- TRISO layers segmented from XCT scans can have FEM mesh applied using CUBIT/Sculpt
 - BISON used to simulate irradiation performance with geometric imperfections, refining physical representation
 - Simulation of the development of stress and the nucleation/propagation of cracks in surrogate TRISO under thermomechanical loads



Analysis Pipeline

Western 😿

UNIVERSITY · CANAL

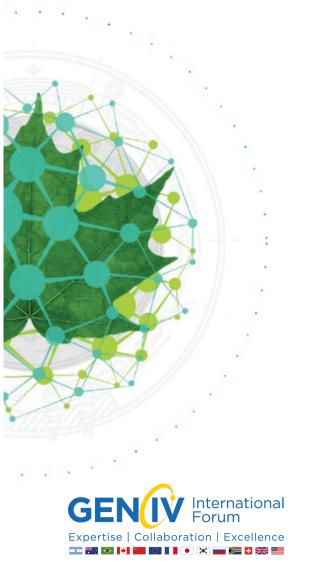
Hydrogen Technologies

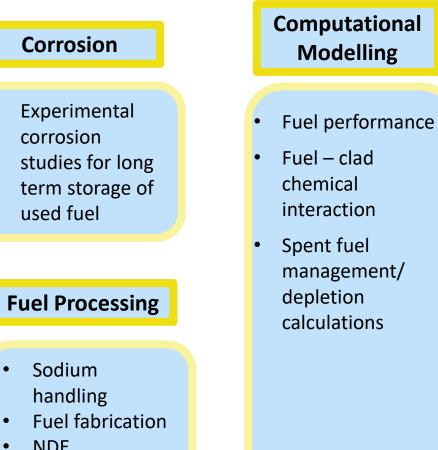
Demonstration of Cu-Cl Cycle at

High Temperature Steam & CO₂ Electrolysis

- Single cell & 3.5 kW multi-stack cell in High • **Temperature Steam**
- CO_2 co-electrolysis development for H_2 & Syngas • production

Equipment

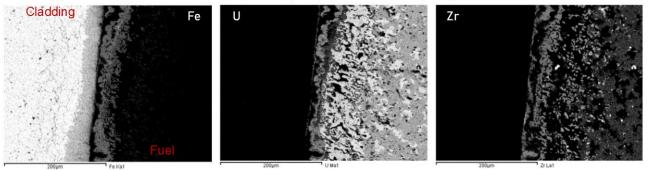

Single-cell developments


Commissioned

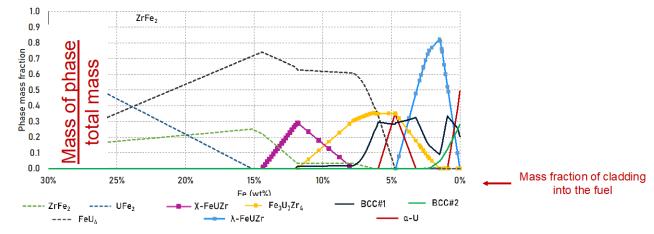
for scale-up

Further advancement

Sodium Fast Reactor Research Summary



NDE


- chemical interaction
- Spent fuel management/ depletion calculations

SFR Fuel Cladding

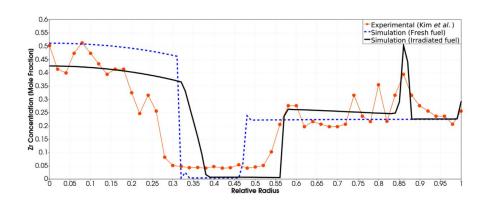
Elements X-ray maps, from JNM 494 (2017) 227

Fuel Clad Chemical Interaction

GENUX International Forum Expertise | Collaboration | Excellence E. Geiger, C. Gueneau, E.C. Corcoran, M.H.A. Piro, J. Nucl. Mater., 551 (2021) 152981.

Chemistry Control During Long-Term Storage of SMR Used Fuel

- Sodium bond between metallic fuel and fuel cladding material can react if exposed to water during DGR flooding
- Fabricate cladding final waste form via additive manufacturing methods
- Custom leak test cell to be designed and commissioned onsite at CMAT to quantify reaction products and their effects on fuel cladding when water interacts with sodium


SFR Fuel Research Activities

CNL - Metallic Fuel Processing

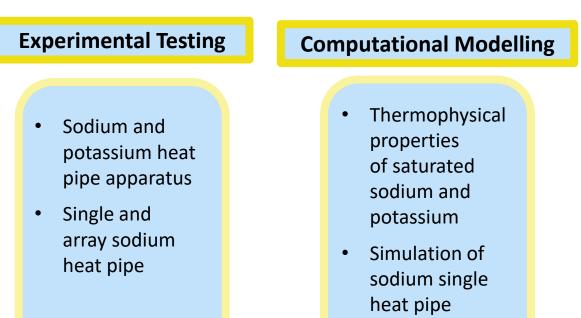
- Safety aspects of handling sodium
 - During fuel fabrication process
 - Disposition of spent fuel
- Sustainability of metallic fuel fabrication process
- Non-destructive techniques for fuel inspection

Metallic Fuel Performance Simulations

- BISON + Thermochimica simulations of UPuZr metallic fuel
- Zr diffusion driven by chemical potential gradients, thereby incorporating the effects of irradiation on solid state diffusion

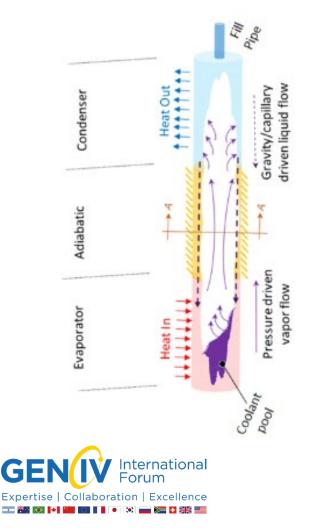
UNIVERSITY


OntarioTech


Spent Fuel Characteristics

- Serpent 3D core physics mode
- Spent fuel management
- Depletion calculations

Heat Pipe Research Summary



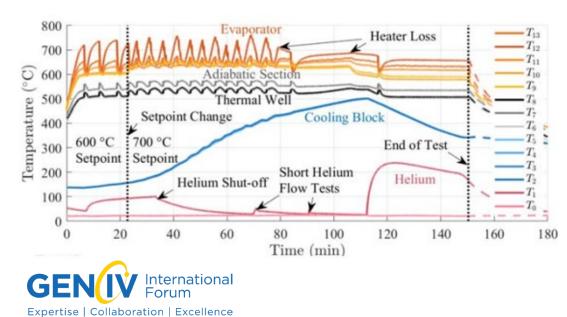
experiments

Heat Pipe Research

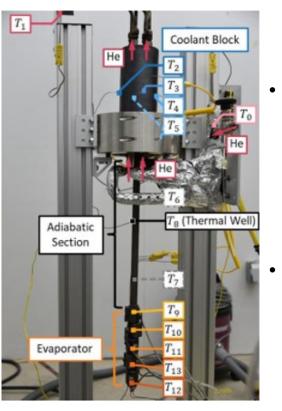
Sodium and Potassium Heat Pipe Apparatuses

- Sodium heat pipe (single)
 - Tested up to 750°C
 - Steady-state tests
 - Cyclical tests, start-up, shutdown
- Sodium heat pipe (array)
 - Tested up to 650°C
 - Rupture of one or multiple heat pipes
- Potassium heat pipe (single)
 - Test up to 650°C
 - Steady-state tests
 - Start-up and shutdown

Canadian Nuclear Laboratories



Assembled and instrumented array sodium heat pipe 50


Heat Pipe Research

Experimental Results from Single Heat Pipe

- Transient behaviour of heat pipe •
- Achieving test conditions and providing data for:
 - Model/code development •
 - Understanding phenomena •
 - Model/code benchmarking •

Computational Modelling of Heat Pipes

- **ARIANT** heat pipe module
 - Thermophysical properties • of saturated sodium and potassium
 - Simulation of sodium single heat pipe experiments.

STAR-CCM+

Solid, liquid, gas transitions •

Laboratoires Nucléaires

Summary

International Forum

tise | Collaboration | Excellence

SMR Development in Canada

- Advanced
 Water-Cooled
 Reactors
- Sodium Fast Reactors
- Molten Salt Reactors
- Very/High-Temperature Gas-Cooled Reactors
- Microreactors

R&D Focus Areas

- Materials & chemistry
- Advanced fuel
 development
- Advanced material development
- Neutronics
- Thermalhydraulics
- Safety & accident analysis
- Computational modelling
- Security & safeguards
- Hydrogen technologies

Facilities, Funding & Collaborations

- Labs
- Research Institutes
- Universities

Supported by programs:

- FNST
- NRCan
- NRCan-NSERC
- NRCan-CNSC

Collaborations:

- GIF
- IAEA
- NEA Working Groups
- EU Horizon
- USDOE

Contributors to this Presentation

Natural Resources Ressources naturelles Canada Canada

Canadian Centre canadien Light de rayonnement Source synchrotron

een's

Thank you!

Upcoming Webinars

Date	Title	Presenter
17 April 2024	Multiphysics Depletion & Chemical Analyses of Molten Salt Reactors	Sam Walker, INL, USA
22 May 2024	Joint GIF/IAEA Webinar: Regulatory Activities in support of SMRs and Advanced Reactor Systems	Paula Calle Vives, IAEA Tarek Tabikh, CNSC, Canada Greg Oberson, NRC, USA
05 June 2024	Directed Energy Deposition Process of Corrosion Resistant Coating for Lead- Bismuth Eutectic Environment	Gidong Kim, UNIST, Korea