

Analysis of the Reactivity Loss of the Phenix Core Cycles for the Experimental Validation of the DARWIN-FR Code Package

Mr. Victor Viallon CEA/IRESNE, France 28 February 2024

Some Housekeeping Items

I	Listen through your computer	Please select the "mic and speakers" radio button on the right-hand audio and pane display		
2	Technical Difficulties	Search the Go To Webinars Support: https://support.goto.com/webinar		
?	To ask a question	Select the "Questions" pane on your screen and type in your question		
	Share with others or watch it again	A video/audio recording of the webinar and the slide deck will be made available at <u>www.gen-4.org</u>		
Q	Please take the survey	A brief online survey will follow the webinar.		
GENUS International Expertise Collaboration Excellence				

To Ask a Question

Click Here

To Open the Go To Webinar Control Panel

¢

Ź

ß

4

Analysis of the Reactivity Loss of the Phenix Core Cycles for the Experimental Validation of the DARWIN-FR Code Package

Mr. Victor Viallon

PhD work supervised and directed by Elias-Yammir Garcia-Cervantes and Laurent Buiron

CEA/IRESNE, France 28 February 2024

GEN IV International Forum Meet the Presenter

Mr. Victor Viallon

- 3rd year PhD Student in the Research Institute for Nuclear Systems for lowcarbon Energy Production (IRESNE) at CEA Cadarache, France
- Master degree in mechanics and industrial risk control engineering degree from the Centre-Val de Loire National Institute of Applied Sciences (INSA CVL)
- Advanced graduate degree in nuclear Engineering from the French Institute for Energy and Health Technologies (INSTN)

GEN IV International Forum

Context

Reactivity loss : Fuel wear speed / Time cycle → Core economics Related to End of cycle core characterization → Safety Can provide information for fast Fission Yield → Science

Analysis of the **Reactivity Loss** of the **Phenix** Core Cycles for the **Experimental Validation** of the **DARWIN-FR Code Package**

GEN IV International Forum

Context

Phenix cycle simulation with DARWIN-FR package

What is reactivity loss?

<u>Multiplication factor</u>: $k_{eff} = \frac{\text{Number of neutron produced by fission}}{\text{Number of neutron absorbed and leaked}}$ <u>Reactivity</u>: $\rho = \frac{k_{eff} - 1}{k_{eff} \cdot \beta_{eff}}$ [\$] <u>Criticality</u>: $k_{eff} = 1 \mid \rho = 0$

Reactivity excess

Control rods to temper the reactivity excess and pilot the reactor reactivity

 ρ = Reactivity excess – Control rods worth

ρ = **10** \$

 $\rho = 10\$ - 20\$ = -10\$$

 $\rho = 10\$ - 10\$ = 0\$$

Neutronics for reactor physics = How and how much is the **reactivity affected**

by self-induced physical phenomena on the reactivity excess (fuel depletion, sodium void, T, ...) by operator induced phenomenon on the control rod worth

GEN IV International Forum

Simulation of Phenix cycles with the DARWIN-FR code package What is reactivity loss ?

in normal operation $\rightarrow \rho = \text{Reactivity excess} - \text{Control rods worth} = 0$

Simulation of Phenix cycles with the DARWIN-FR code package What is reactivity loss ?

in normal operation $\rightarrow \rho = \text{Reactivity excess} - \text{Control rods worth} = 0$

How to compute reactivity loss ?

```
BATEMAN \rightarrow N_i(\vec{r}, t) = g(\tau(\vec{r}, \phi(\vec{r}, E, \Omega, t), \kappa, \sigma(E, T)), \gamma_I, B, \lambda)
```

```
BOLTZMANN \rightarrow \boldsymbol{\phi}(\vec{r}, \boldsymbol{E}, \boldsymbol{\Omega}, \mathbf{t}) = f(N_i(\vec{r}, t, T), \boldsymbol{\sigma}(\boldsymbol{E}, \boldsymbol{T}), \boldsymbol{\partial}\boldsymbol{\omega}(\boldsymbol{T}))
```


Coupled equations ----> Quasi-static hypothesis (Boltzmann stationary + Constant flux depletion)

Reactivity loss coefficient : $\alpha_{BU} = \frac{d\rho_{RE}}{dt}$

We need to add **assumptions** and use **deterministic** methods <

How to compute reactivity loss ?

 $\mathsf{BATEMAN} \rightarrow N_i(\vec{r}, t) = g(\tau(\vec{r}, \phi(\vec{r}, E, \Omega, t), \kappa, \sigma(E, T)), \gamma_I, B, \lambda)$

 $\mathsf{BOLTZMANN} \rightarrow \boldsymbol{\phi}(\vec{r}, \boldsymbol{E}, \boldsymbol{\Omega}, \mathbf{t}) = f(N_i(\vec{r}, t, T), \boldsymbol{\sigma}(\boldsymbol{E}, \boldsymbol{T}), \boldsymbol{\partial}\boldsymbol{\omega}(\boldsymbol{T}))$

• Coupled equations ----> Quasi-static hypothesis (Boltzmann stationary + Constant flux depletion)

Reactivity loss coefficient : $\alpha_{BU} = \frac{d\rho_{RE}}{dt}$

Phenix reactor

CEA Marcoule, France Pool-type Sodium cooled Fast Reactor – **563 MWth** 35 operational years – more than **50 cycles** 100 fissile subassemblies 150 fertile blanket subassemblies 6 control rods **In-core experiments** for irradiation purpose

Joël Guidez: Phénix, the experience feedback 15

GEN IV International Forum

Simulation of Phenix cycles with the DARWIN-FR code package DARWIN-FR bias decomposition

"Real" value / experimental value

 $\widehat{E} = \underbrace{C_{HF}}_{+} + \underbrace{dC_{ND}}_{+} + \frac{dC_{MPdata}}_{+}$

Equations "perfectly" solved Error made by using **assumed** rather than the "**real**" **input data (uncertainties)**

$$C_{HF} = \underbrace{C^{DR-MP}}_{\text{Equations solved with assumptions}} + \underbrace{\Delta C_{AP3} + \Delta C_{MP} + \Delta C_{N_i^0} + \Delta C_{chain} + \Delta C_{tech} + \Delta^2(...) + \cdots}_{\text{Equations solved with assumptions}} = \underline{\Delta C}$$

Bias decomposition = Estimate epistemic uncertainties

Simulation of Phenix cycles with the DARWIN-FR code package DARWIN-FR bias decomposition

 $\alpha_{BU}^{DR-MP} = -4.650 \text{ ¢/EFPD}$

- $\Delta C_{MP} \approx 0\%$ MP coupling contribution $0.9\% \rightarrow$ Uncertainty over this (low) contribution \rightarrow negligible $\Delta C_{N_i^0} \approx 0\%$ Database validated on BOC reactivity + Cycles done with D3R until cycle 48 and no difference
between computed and initialized N_i^0 $\Delta C_{tech} \approx 0\%$ Cycle stable so the geometry doesn't change (significantly) during irradiation $\Delta C_{tech} \approx 0\%$ Chain depletion (29 HN 150 FP / instead of several thousands) developed for reactivity loss and
- $\Delta C_{chain} \approx 0\%$ (Chain depletion (29 HN 150 FP / instead of several thousands) developed for reactivity loss and validated in [Foissy 2020]
- $\Delta^{n\geq 2} \approx 0\%$ Assumption

 $\Delta C_{AP3} \approx 0\%$ BOC reaction rate comparison between APOLLO-3-FR and the reference Monte-Carlo tool TRIPOLI-4[®] To be investigated in depth

International [Foissy 2020] : Martin Foissy. Développement d'une méthode de qualification et quantification des incertitudes des caractéristiques neutroniques du cœur d'ASTRID en fin de cycle. PhD Thesis, Aix-Marseille, October 2020.

Expertise | Collaboration | Excellence

G

Simulation of Phenix cycles with the DARWIN-FR code package DARWIN-FR bias decomposition

Axial position history of the Rod Bank through irradiation cycle → fundable inside cycle report, BUT...

The axial position must be corrected to take into account thermal expansion

How to obtain the rod bank worth through axial position ($\rho_{RB}(z)$)

Not possible to measure directly the rod bank worth for the upper part of the core 😕

Possible to only measure directly individual control rod worth $\rho_i(z)$ and collapse them into the $\rho_{RB}(z)$ by taking into account the **shadow effect**

:•:

Experimental reactivity loss

How to obtain each individual control rod worth ($\rho_i(z)$) \rightarrow weight by balancing

Global scheme of the reactivity loss curve construction

<u>Before</u> : Same β for every cycle | SE(z) = cst for every cycle | expansion not considered for weight balancing | **no uncertainty**

Global scheme of the reactivity loss curve construction

<u>Before</u>: Same β for every cycle | SE(z) = cst for every cycle | expansion not considered for weight balancing | **no uncertainty**

Reactivity loss coefficient actualization

$$\alpha_{BU}^{OLD} = -5.653 \text{ ¢}/EFPD$$

 $\alpha_{BU}^{NEW_1} = -4.845 \text{ ¢}/EFPD$
 $\alpha_{BU}^{NEW_2} = -4,578 \text{ ¢}/EFPD$
 $\alpha_{BU}^{NEW} = -4.685 \text{ ¢}/EFPD$
To be compared to

 $\alpha_{BU}^{DR-MP} = -4.650 \ c/EFPD$

Updated Shadow-effect

Updated β

Thermal expansion during weight balancing

Uncertainty propagation via Monte-Carlo method =

- = Sampling the input data with the related distribution
 - For known uncertainties : correct distribution
 - For unknown uncertainties : conservative uniform distribution

GEN IV International Forum Reactivity loss coefficient actualization

The most trustable value considering an exhaustive analysis

What about the power uncertainty ?

Recap

<u>Best-Estimate value</u>: $\alpha_{BU}^{DR-MP} = -4.650$ ¢/EFPD

Bias decomposition : $\Delta \alpha_{\rm bias} \approx 0$ (to be investigated)

<u>"Clean" Experimental value</u>: $\alpha_{BU}^{exp} = -4.685$ ¢/EFPD

<u>Conservative Experimental uncertainty</u>: $\Delta \alpha_{BU}^{exp} = 0.061$ ¢/EFPD | 1.3 %

```
<u>Nuclear data uncertainty</u>: \Delta \alpha_{ND} = ?
```


3

Reactivity loss nuclear data uncertainty propagation

GEN IV International Forum

Collaboration | Excellence

Reactivity loss sensitivity calculation

How to compute the sensitivities

In neutronics it is possible to "easily" obtain the sensitivity to the k_{eff} of cross-section \rightarrow Perturbation Theory (PT)

Problems with local sensitivities computed ______ Only for direct term in the Boltzmann equation with PT for depletion calculation?

For this kind of problems, specific formalism needs to be used \rightarrow Bateman/Boltzmann coupled sensitivities [Takeda, Williams in the 80's] Compute by backtracking in time

Implemented in APOLLO-3[®] and first time that this formalism is used on a **power reactor**

Finally, we don't want exactly the sensitivity to the k_{eff} but to the reactivity loss between the BOC and the EOC

EGPT : Equivalent Generalized Perturbation Theory

$$S_{\Delta\rho_{A\to B}}^{EGPT} = \frac{k_A}{k_B - k_A} S_{k_B} - \frac{k_B}{k_B - k_A} S_{k_A}$$

Uncertainty propagation

$$\frac{\Delta C_{DN}}{C} = \sqrt{TS \cdot \left(M_{\sigma_{HN}} + M_{\sigma_{FP}} + M_{\gamma} + M_{\kappa} + M_{\lambda} + M_{B}\right) \cdot S}$$

$M_{\sigma_{HN}} + M_{\sigma_{FP}}$	\rightarrow	COMAC V1 (experimental covariances)	$\sqrt{TSM_{COMACV1}S}$	= 7.36 %
M_{γ}	\rightarrow	Variances / ad-hoc covariances*	$\sqrt{TSM_{\gamma}S} = 1.03$ %	6
M_{λ}	\rightarrow	Variances / no covariances	$\sqrt{TSM_{\lambda}S} = 0 \%$	
M_B	\rightarrow	Ø	\approx 0 %	
M_{κ}	\rightarrow	Ø	\approx 0 %	
тс	TAL C	oupled sensitivities – $\frac{\Delta C_{DN}}{c}$	7.43 %	(7 days of uncertainties for a 100 days cycle)
	TOTA	L Boltzmann alone – $\frac{\Delta C_{DN}}{C}$	2.19 %	(classical PT miss a large amount of information

*With the help of Luca Fiorito from SCK CEN

Recap reactivity loss VVUQ

<u>Best-Estimate value</u>: $\alpha_{BU}^{DR-MP} = -4.650$ ¢/EFPD

Bias decomposition: $\Delta \alpha_{\rm bias} \approx 0$ (to be investigated)

<u>"Clean" Experimental value</u>: $\alpha_{BU}^{exp} = -4.685$ ¢/EFPD

<u>Conservative Experimental uncertainty</u>: $\Delta \alpha_{BU}^{exp} = 0.061$ ¢/EFPD | 1.3 %

<u>Nuclear data uncertainty</u>: $\Delta \alpha_{ND} = 7.4 \%$

Perspective on data assimilation using power reactor data

GE

Assimilation perspective

$$\begin{array}{ccc} \Delta p_{1} & p_{1} \\ \Delta p_{2} & p_{2} \\ \vdots & \vdots \\ \Delta p_{N-1} & p_{N-1} \\ \Delta p_{N} & p_{N} \end{array} \rightarrow \begin{array}{c} \text{Boltzmann/Bateman} \\ \text{calculation} \end{array} \rightarrow \alpha_{BU}^{C} \pm \Delta \alpha_{BU}^{C_{DN}} & \alpha_{BU}^{EXP} \pm \Delta \alpha_{BU}^{EXP} \end{array}$$

Assimilation process wants to find the set of p_i and Δp_i that allow to obtain : $\alpha_{BU}^C = \alpha_{BU}^{EXP}$ [correction of input data] $\Delta \alpha_{BU}^{C_{DN}} = \Delta \alpha_{BU}^{EXP}$ [uncertainty reduction of input data]

By respecting some physical and experimental constraints (covariance matrix)

Minimization problem

Problem : Optimization with brute force approach not reachable today (N > 10000)

→ But we can used **sensitivities**

Assimilation perspective

Some results for data assimilation exercises

Data Assimilation of the 239 Pu \rightarrow 107 Pd Fission Yield

Some results for data assimilation exercises

A priori correlation Matrix

55

What is the physical value of those changes ?

How trustable is the initial correlation Matrix?

How the initial correlation Matrix affect the result ?

• • •

Conclusions/Perspectives

The development of future reactor has to rely on **validated** simulation tool with mastered and **quantified uncertainties**

New generation tools allow to extend the field of VVUQ to **power reactor** \rightarrow it has been used for the **Phenix reactivity loss**

Starting from JEFF 3.1.1 with 7.4% nuclear data uncertainties to 1.3%

Short term perspective

- Corrective factor
 - \rightarrow compare with trends from JEFF 4.
 - → propagate to NDAST / ICSBEP / IRPhE to see the impact of such change
- Oriented further experiment towards some nuclear data
- Create adjusted cross-section on purpose (for a given reactor)

Long term perspective

- Perform the same exercise with other power reactor (JOYO, VTR, EBR-II, ...)
- Uncertainty quantification + MP for core design purpose (lower the margins)

Upcoming Webinars

Date	Title	Presenter
20 March 2024	Overview of Canadian R&D Capabilities to Support Advanced Reactors	Lori Walters, CNL, Canada
17 April 2024	Multiphysics Depletion & Chemical Analyses of Molten Salt Reactors	Samuel Walker, INL, USA
22 May 2024	Joint GIF/IAEA Webinar: Regulatory Activities in support of SMRs and Advanced Reactor Systems	 Panelists: Ms. Paula Calle Vives, IAEA Mr. Tarek Tabikh, CNSC Dr. Greg Oberson, NRC Moderators: Dr. Vladimir Kriventsev, IAEA Dr. Patricia Paviet, PNNL

