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GEN IV International Forum Microreactor Development

• Micro-reactors are of interest due to flexible, reliable; 
• Small, transportable, on-site installation;
• Support deep space, government off-grid, remote communities, e.g.,

• Designs include heat pipe cooled and gas cooled micro-reactors; 
• Research demonstrate designs are safe, and efficient.
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GEN IV International Forum Past work for Heat Pipe Micro-Rx’s

• Heat pipe cooling technology has been widely applied since 1960s for 
specialized applications

• Space exploration projects: KRUSTY, HOMER, SAIRS, HP-STMCs, MSR, etc.
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*NASA and National Nuclear 
Security Administration 
engineers lower the wall of a 
vacuum chamber around the 
Kilo power reactor system
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Industrial effects
Project Company Fuel Power

Heat Pipe Cooled Microreactor

eVinci Westinghouse UO2 or TRISO* 1-5 MWe

Aurora Oklo Metallic Uranium-Zirconium 1.5 MWe

Gas-cooled Microreactor

Holos Quad HolosGen TRISO 3-13 MWe

Micro Modular Reactor USNC Fully Ceramic Microencapsulated 5 MWe

Xe-Mobile X-Energy TRISO >1 MWe
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*TRISO: Tri-structural ISOtropic particle fuel
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• Westinghouse’s eVinci design uses mature heat pipe technology 
developed by LANL
– Comprised of solid block with 3 types of channels for fuel rods, moderators, 

heat pipes

• Oklo’s Aurora Powerhouse is inspired by NASA’s Kilopower reactor
– Uses metallic uranium fuel alloy in a solid block with heat pipe cooling 

technology
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GEN IV International Forum Heat Pipe Flowchart
Heat Pipe is made of Wall, Wick, and Coolant

• In the evaporator, liquid coolant turns to vapor

• Vapor coolant goes through adiabatic region

• In the condenser, vapor coolant is cooled back to liquid

• Liquid coolant flows back through Wick
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*Conventional HP:
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GEN IV International Forum SAM/MOOSE Analysis Approach

• MOOSE can conduct multi-scale simulation (e.g., heat conduction)
– Plug-in infrastructure simplifies the definition of key physical processes, material 

properties, post-processing
• SAM has Heat Pipe model to describe fluid flow and heat transfer behavior; assumes 

high rate of axial conduction in heat pipe and neglects vapor flow
• Processes considered: Heat conduction, liquid flow/heat transfer, interfacial 

mass/momentum/energy transfer
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• To verify SAM/MOOSE coupling, code-to-code comparison is first tested
• Geometry is a solid monolith block; 1 heater rod and 6 heat pipes (Na) – similar to

ANL benchmark calculation

ANL Benchmark Comparison

Simulation 
Components:
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GEN IV International Forum ANL Benchmark Comparison

• Time step for both cases is kept the same and results differ early in time
• Initial temperature set at 875K and solid monolith surfaces is adiabatic
• Heat pipe condenser temperature is 750K
• Heat produced in heater rod and removed by heat pipes
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Monolith Fuel Rod
Heat Pipe

Vapor Wick Wall

Density (kg m3) 1873.9 11,000 1 865 7670

Specific Heat (J/kg) 1603.5 939 10,000 1200 568.7

Thermal Conductivity  
(W/mK-1)

30 18 1E+06 47.4 21.8

Material Properties of HP Micro-reactor
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• Small differences at 10000s between ANL & UW analysis

• Both benchmarks use different # of nodes (25459 for ANL, 51573 for our HEX20 elements)

• Results indicate our modeling strategy can be used to couple solid core heat conduction to Heat 

Pipe cooling. It could potentially be expanded to other research. 

14
Temperature Distributions Energy Balance
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GEN IV International Forum MAGNET Test Facility at INL

• Micro-reactor Agile Non-nuclear Experimental Test-bed (MAGNET) at INL 
• Goal is to provide a test bed that is broadly applicable to multiple microreactor concepts (initial 

HP cooled configuration)
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*Vacuum Chamber showing door and test article inside Solid monolith with 54 fuels and 37 HPs
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MAGNET Simulation

• MAGNET hexagonal solid monolith has: 54 heater rods and 37 heat pipes

• Fission heat is simulated with electric heater rods

• Monolith block and heat rods made up of stainless steel (SS 316L)

• Power distributions of heater rods are not finalized; assumed a cosine power 

shape to approximate actual power profile

• Note: Temp. of monolith heaters (3D) and heat pipes (2D) calculated separately 

(MOOSE: monolith + rods,  SAM: heat pipes)
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MAGNET Simulation

• Heat generated transferred from rods to monolith and to embedded heat pipes
• Monolith temperature indicates that heater rods close to center have higher temp 

than outside edges

MAGNET 37 HP 
Model 

Configuration:
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Components:
Monolithic Block

Height: 1 m

Diameter: 0.244 m

Material: SS 316L

Boundary 
Condition:

Adiabatic 
radial & 
axial

Electric Heaters
Quantity: 54

Diameter: 0. 014 m

Material: SS 316L

Total Pwr: 75 kW

Heat Pipe

Quantity: 37 Diameter: 0.0156 m

Material: Vapor: Na Wick: SS 316L Wall: SS 316L

Outer 
Radius:

Vapor: 0.0053 m Wick: 0.0066 m Wall: 0.0078 m

Length: Evap: 1 m Adiab: 0.2 m Cond.: 0.8 m

Evaporator Wall 
Interfacial HTC *:

105 W/m2K-

1
Condenser Wall Temperature: 750 K

*Assumed gas gap between monolith and HP of ~ 0.5 mm
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Steady State Results

Monolith Steady State Temperature:

Plane Z = 0
Plane X = 0
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Heat Pipe

Steady State Results
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SS temp of monolith along X-axis SS temp of monolith along Y-axis

*Trends imply temp 
distributions are symmetrical 
across monolith
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Steady State Analysis
Case Element Type Heating Power 

(kW)
Evaporator Wall HTC 
(W/m2K-1)

Condenser Wall Boundary Conditions HP Fail

0 HEX20 75 105 750 K None

1 HEX8 75 105 750 K None

2 HEX27 75 105 750 K None

3 HEX20 100 105 750 K None

4 HEX20 75 103 750 K None

5 HEX20 75 107 750 K None

6 HEX20 75 105 730 K None

*HEX = x-node hexahedral element
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• HEX8 = 8-node trilinear hexahedral element
• HEX20/27 = 20-node and 27-node quadratic hexahedral elements
• More nodes results in higher simulation accuracy but slows 
computing process

• Increasing # nodes no longer affects accuracy past a certain point
• HEX20 is best option for high-precision simulation

23

*Node numbering for 
HEX8, HEX20, HEX27
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Steady State Analysis
Monolith Steady State Temperature:

Cases 0-2 Cases 0, 3
1 HEX8 75 105 750 K

2 HEX27 75 105 750 K

3 HEX20 100 105 750 K

Heat Pipe Microreactor Research
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Steady State Analysis

Cases 0, 4, 5 Cases 0, 6
4 HEX20 75 103 750 K

5 HEX20 75 107 750 K

6 HEX20 75 105 730 K

Monolith Steady State Temperature:
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Proposed Cases: 

27

Description
HTC (W/m2K-1)

SS Transfer 100s (HP Fail) 20000s

Case 1 
*base case

No heat pipe failure 100000 100000 100000

Case 2 HP 1 Failure 
*center hp

100000 0 0

Case 3 HP 1- 7 Failure
*center, first ring

100000 0 0

Case 4 HP 1-19 Failure
*center, 2 rings

100000 0 0

Case 5 HP 1-37 Failure
*entire monolith

100000 0 0

*Assumption: Case fail when T > 1500 K
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28

Maximum Fuel Temperature Average Fuel Temperature

Case 1-5: 

*Trend across average and max fuel temperature are generally similar as expected
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Monolith Temperature Results

Case 1-4: 

Maximum Monolith Temperature Average Monolith Temperature

*Trend across average and max monolith temperature are generally similar as expected
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Case 1-4: T_Solid Temp
*X-Axial data plot line runs along 
the x axis through monolith 
center

 Example:

Heat Pipe

Heat Pipe Microreactor Research
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*Heat Pipe Temperature 
cut along the y plane

*Monolith Temperature cut 
along the x plane

*Visuals constructed using Paraview

*Monolith Temperature cut 
along the y plane

Case 3 Temperature Distributions
*Take note of temperature scales, vary significantly between cases
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Average Temp of First 3 HP Energy Transfer of First 3 HP

Case 3 Calculation Results
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*Heat Pipe Temperature 
cut along the y plane

*Monolith Temperature cut 
along the x plane

*Visuals constructed using Paraview

*Monolith Temperature cut 
along the y plane

*Take note of temperature scales, vary significantly between cases
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Average Temp of First 3 HP Energy Transfer of First 3 HP

Case 5 Calculation Results
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Proposed Cases: 

Description
HTC (W/m2K-1)

Starting Time (s) Ending Time (s)
*Fail time

Case 1 No heat pipe failure N/A N/A

Case 3 *base case Base Case 0 N/A

Case 6 *** 400 500

Case 7 *** 1900 2000

Case 8 *** 9900 10000

 Assumption: Case fail when T > 1500 K

***same as case 3 with different failure times
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Maximum Fuel Temperature Average Fuel Temperature

*Trend across average and max fuel temperature are generally similar as expected

Case 1, 3, 6-8: 
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Monolith Temperature Results
Case 1, 3, 6-8 : 

Maximum Monolith Temperature Average Monolith Temperature

*Trend across average and max monolith temperature are generally similar as expected
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Case 3 Case 6 Case 7 Case 8

AT 5000s:
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Case 1, 3, 6-8 : 

X-Axial Monolith Temperature

Heat Pipe

*X-Axial data plot line runs along 
the x axis through monolith center

 Example:

T_Solid Temp
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40

*Heat Pipe Temperature 
cut along the y plane

*Monolith Temperature cut 
along the x plane

*Visuals constructed using Paraview

*Monolith Temperature cut 
along the y plane

*Take note of temperature scales, vary significantly between cases
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Average Temp of First 3 HP Energy Transfer of First 3 HP

Case 8 Calculation Results
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General Conclusions/Observations

• SAM/MOOSE coupling successfully applied to the heat pipe microreactor;

• Heat pipes transfer the energy from core to secondary side well;

• Sensitivity analysis test a few critical thermal hydraulic parameters;

• Heat pipe failures can challenge the monolith integrity.
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Summary

• Current contribution:
– Heat Pipe model using SAM/MOOSE coupling
– MAGNET - Steady state and transient results

• Future projects:
– Couple HP to heat exchanger with secondary loop
– Develop more detailed heat pipe model
– Couple to neutronics and thermal hydraulics
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