

Experience of HTTR Licensing for Japan's New Nuclear Regulation Mr. Etsuo Ishitsuka, JAEA, Japan 22 April 2021

Canadian Nuclear Laboratories

aho National Laboratory

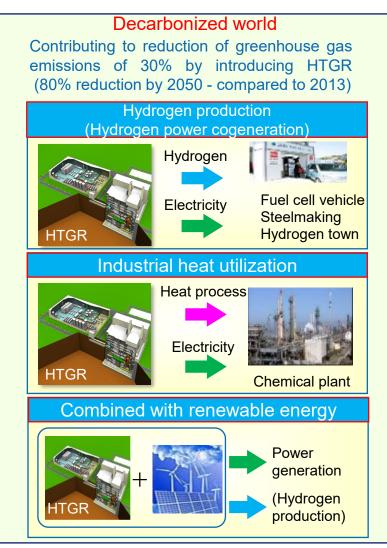
Laboratoires Nucléaires Canadiens

JAEA

Meet the Presenter

Dr. Etsuo Ishitsuka is the general manager of the HTTR Reactor Engineering Section at the Department of HTTR project in JAEA, Japan Atomic Energy Agency. He earned his Doctorate of Engineering from the University of Tokyo in 1999. He started his research career at the Japan Atomic Energy Research Institute in 1986 as a research engineer for the Japan Materials Testing Reactor (JMTR) project. He worked in a wide field of neutron irradiation technology development, such as production of medical radioisotopes, fusion blanket materials, plasma facing components and plasma diagnostics components, etc. He was promoted to Senior research engineer in 1994 and managed the experiments of a fusion blanket functional test in JMTR and the ITER project as the deputy general manager. After managing an international cooperation and training of foreign young researchers, he joined HTTR project in 2015 as the general manager. His current works are the technology developments related to core management and operation. His team was in charge of the seismic evaluation of facilities and beyond design basis accidents in this licensing.

Email: ishitsuka.etsuo@jaea.go.jp

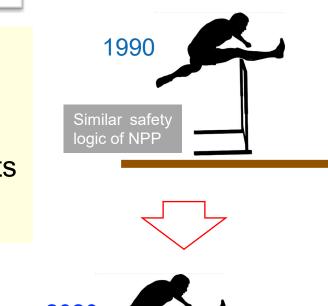

Expertise | Collaboration | Excellence

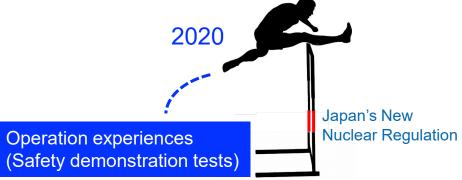
-- 👬 💽 🚺 🔚 🕥 🚺 💿 💓 📥 🔚 👯 ⋿

Innovation by HTGR

Items	HTGR	LWR			
Electric output (thermal output)	SMR (Small Modular Reactor) ~300MW (~600MW)	Large scale NPP ~1000MW (~3,000MW)			
Outlet temperature	700 °C ~ 950 °C	~300 °C			
ApplicationHeat application (hydrogen production, high-temperature steam, desalination, district heating), power generationPower generation					
Safety (S) ✓ Excellent safety feature (no melting core)					
Stable power supply (E)					
✓ Stable supply of hydrogen energy from nuclear power					
Economic efficiency (E) ✓ Heat utilization rate: ~80% ✓ Electricity generation efficiency: ~50% ✓ High burnup (120GWd/t)					
Environmental friendliness (E)					
 ✓ ~1/4 spent fuel generated from LWRs ✓ Contribute to reduce carbon dioxide emission 					
GENIV International Forum					

Contents




1) Outline of HTTR

- 2) Outline of Japan's New Nuclear Regulation
- 3) Conformation of Adaptability to New Regulatory Requirements
- 4) Conclusion

References of HTTR : -Excellent Feature of Japanese HTGR Technologies, JAEA-Technology 2018-004 -High Temperature Gas-cooled Reactors, Volume 5 of the JSME Series in Thermal and Nuclear Power Generation 2021

Outline of HTTR

Location of HTTR

GEN

-- 🚟 💽 💽 📰 💽 🚺 💿 💓 💳 🚝 🗄 💥 📟

Oarai Research and Development Institute

6

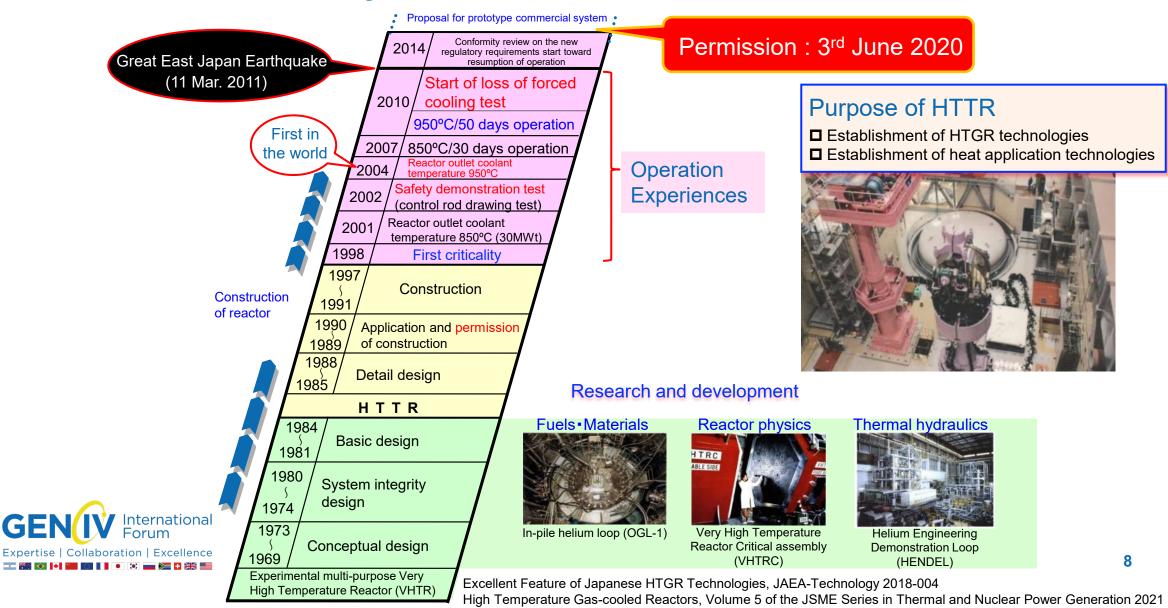
Major Specifications of HTTR

Thermal power Average power density Outlet coolant temperature Inlet coolant temperature Primary coolant pressure Direction of coolant flow (core) Moderator / Reflector Core height Core diameter Fuel

- Uranium enrichment
- Fuel element type Pressure vessel

Containment vessel

30 MW 2.5 MW/m³ 850 °C / 950 °C 395 °C 4 MPa (He) Downward Graphite 2.9 m 2.3 m Low enriched UO₂ 3 ~ 10% (Ave. 6%) Prismatic block 2.25Cr-1Mo steel ^H13 m \times ^{ID}6 m, ^t122-160 mm Steel containment ^H30 m \times ^{ID}18.5 m, ^t30-38 mm



Outline of HTTR History

Overview of the HTTR Project

(1) Reactor technology

- 30 MW_{th} and 950°C prismatic core advanced test reactor (Operation start in 1998)
- Safety evaluation by NRA for restart
 Accumulation of validation data
- Advanced fuel development

(2) Gas turbine and H₂ technology

R&D of gas turbine technologies such as highefficiency helium compressor, shaft seal, and maintenance technology

He compressor

In October 2016, 31 hours of hydrogen production with the rate of 0.02 m³/h was successfully achieved.

(3) Innovative HTGR design

- GTHTR300 for electricity generation and desalination
- GTHTR300C for cogeneration and nuclear-renewable hybrid system.
- Clean Burn HTGR for surplus plutonium burning
- Development of safety standards

(4) HTTR-GT/H2 test

The connection of a helium gas turbine power generation system and hydrogen production with the HTTR.

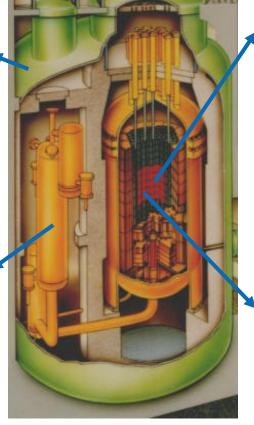
• Basic design of the HTTR-GT/H₂ test is completed.

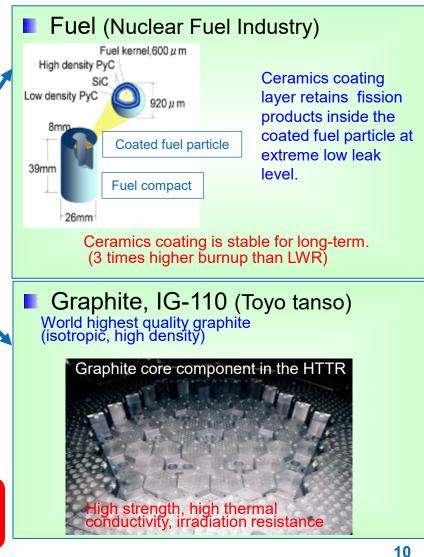
High Temperature Gas-cooled Reactors, Volume 5 of the JSME Series in Thermal and Nuclear Power Generation 2021

Japanese Technologies as a Front Runner

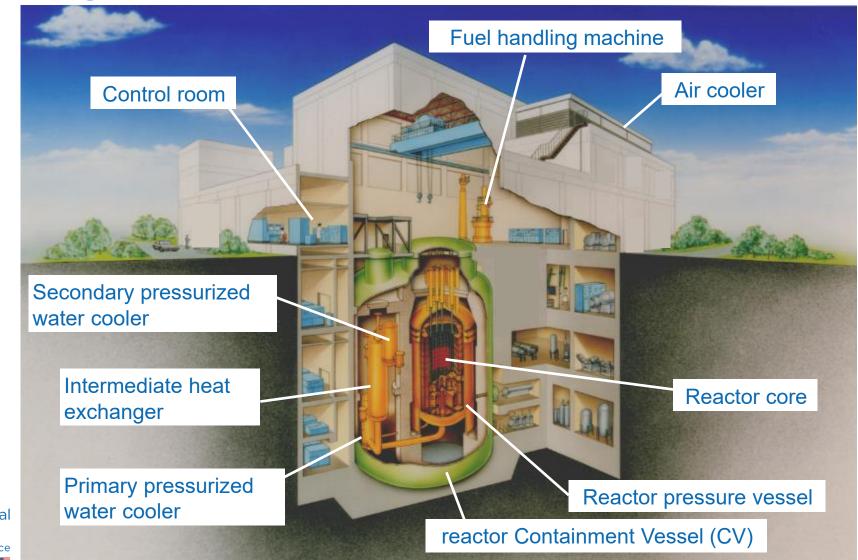
Experiences of HTTR design, construction, operation (MHI, Toshiba/IHI, Hitachi, Fuji Electric, KHI, etc.)

> A lot of technical data of HTTR was accumulated. Optimum design of commercial HTGR can be conducted by only Japanese technology.


High temperature resistant metal (Mitsubishi material)

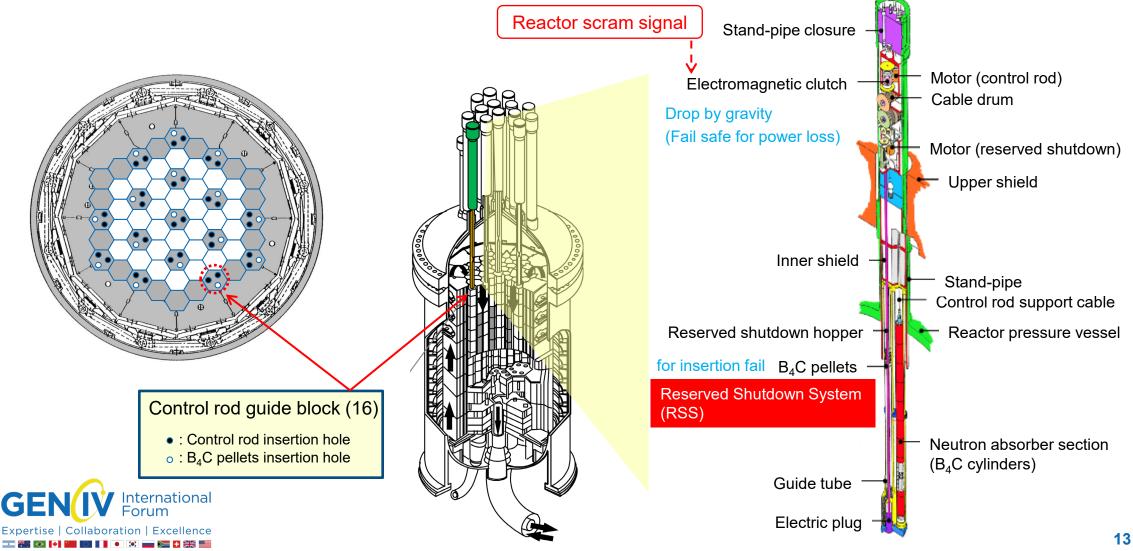

Hastelloy XR is applicable at 950°C as the nuclear structural material .

IHX can deliver hot helium gas at 950°C to outside the reactor pressure vessel.



Constructed by domestic technology


Reactor Building of HTTR


Excellent Feature of Japanese HTGR Technologies, JAEA-Technology 2018-004 High Temperature Gas-cooled Reactors, Volume 5 of the JSME Series in Thermal and Nuclear Power Generation 2021

Core components of HTTR

High Temperature Gas-cooled Reactors, Volume 5 of the JSME Series in Thermal and Nuclear Power Generation 2021

HTTR safety features: Reactor shutdown

Excellent Feature of Japanese HTGR Technologies, JAEA-Technology 2018-004 High Temperature Gas-cooled Reactors, Volume 5 of the JSME Series in Thermal and Nuclear Power Generation 2021

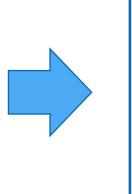
HTTR safety features: Reactor cooling

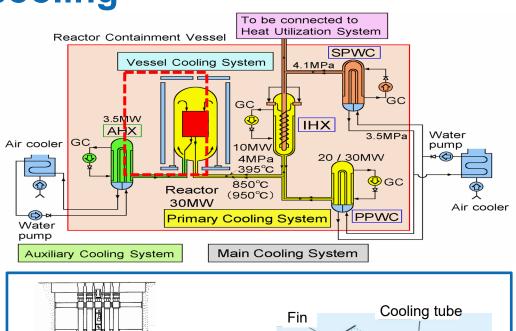
< Normal operation >

Main Cooling System

< Abnormal condition >

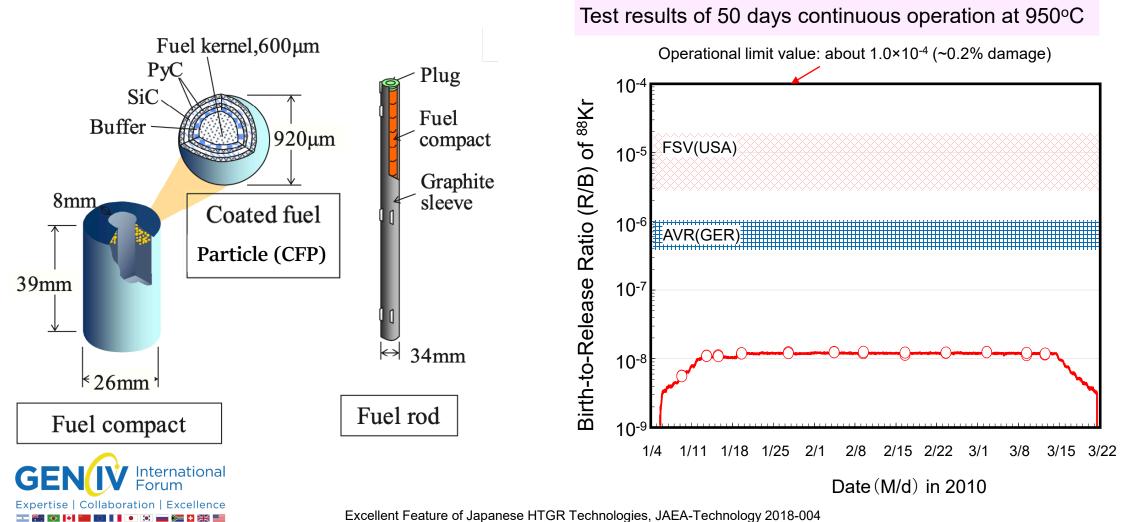
Auxiliary Cooling System


- Forced-circulation core cooling
- 1 system


< Abnormal condition >

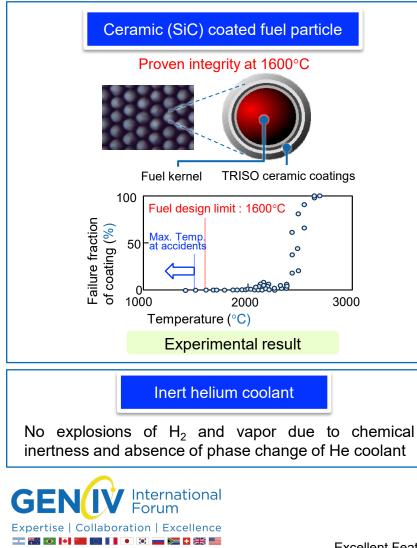
Vessel Cooling System

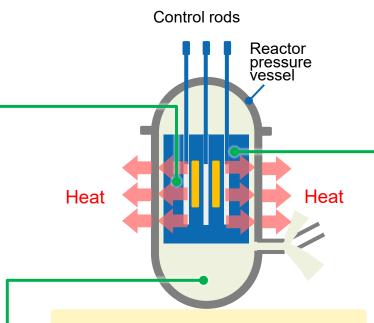
- From outside of pressure vessel
- Forced-circulation cooling water
- Final heatsink: atmosphere
- 2 systems
- Constant operation



Thermal Reflection Plate Heat removal adjustment panel Concrete

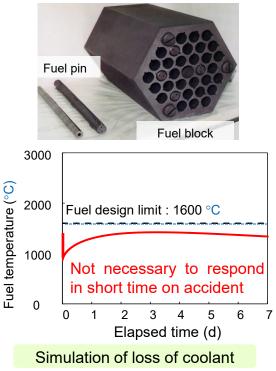
Excellent Feature of Japanese HTGR Technologies, JAEA-Technology 2018-004 High Temperature Gas-cooled Reactors, Volume 5 of the JSME Series in Thermal and Nuclear Power Generation 2021


(JAEA)


HTTR safety features: Fission product containment

High Temperature Gas-cooled Reactors, Volume 5 of the JSME Series in Thermal and Nuclear Power Generation 2021

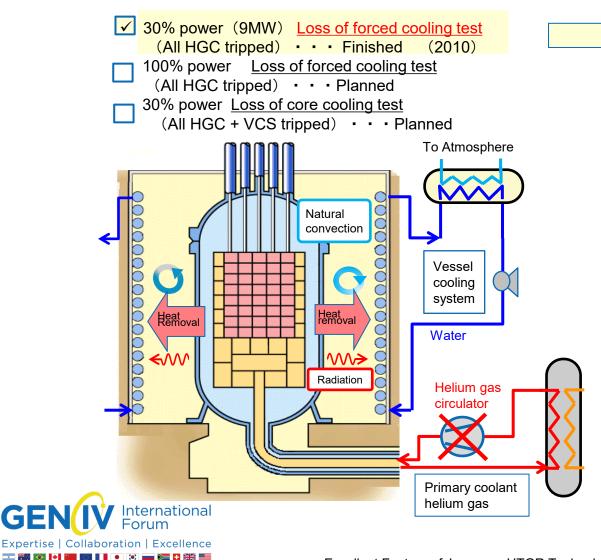
Inherent reactor safety design of HTTR

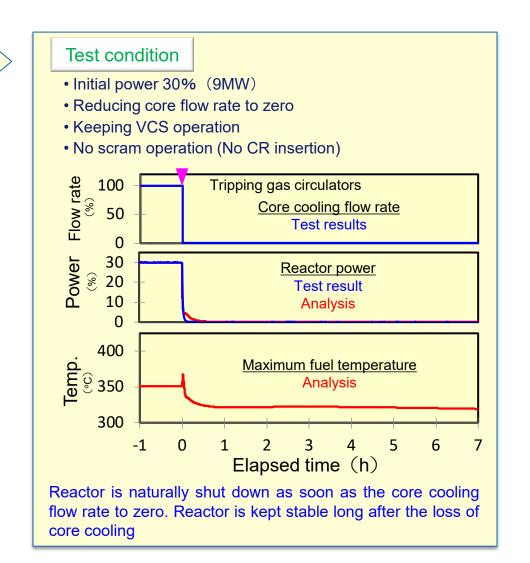


Reactor is safely shutdown and cooled by inherent design features without reliance on any equipment or operator action in the event of loss of coolant or station blackout

Old regulatory standards do not take into account the good points of inherent reactor safety design

Graphite core


Negative reactivity coefficient, high heat capacity and large thermal conductivity of graphite core provide for safe removal of core decay heat



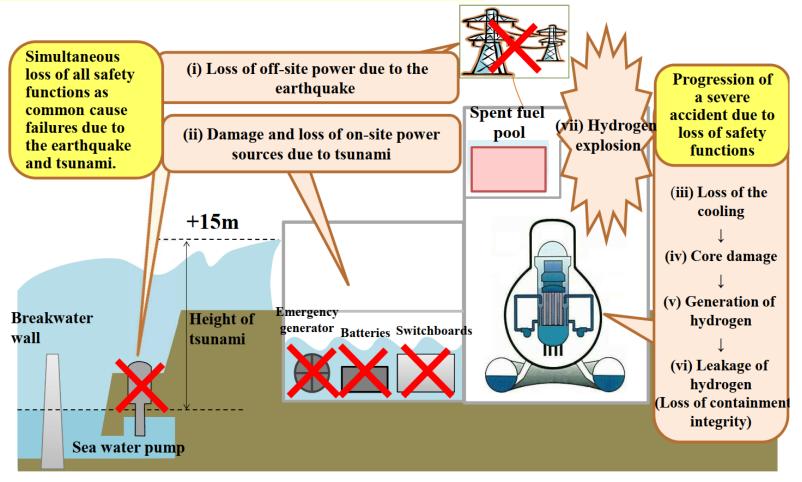
Excellent Feature of Japanese HTGR Technologies, JAEA-Technology 2018-004

High Temperature Gas-cooled Reactors, Volume 5 of the JSME Series in Thermal and Nuclear Power Generation 2021

Safety demonstration test

Excellent Feature of Japanese HTGR Technologies, JAEA-Technology 2018-004 High Temperature Gas-cooled Reactors, Volume 5 of the JSME Series in Thermal and Nuclear Power Generation 2021

Outline of Japan's New Nuclear Regulation



Safety Regulation Problems before Fukushima Daiichi Nuclear Accident

Lessons learned from the Fukushima-Daiichi Nuclear Power station accident

- All safety functions were lost simultaneously due to the earthquake and tsunami.
- The initial impact spread and the crisis eventually developed into a severe accident.

https://www.nsr.go.jp/data/000067212.pdf

JAEA

GEN

🚺 🔹 💓 🔚 😹 💻

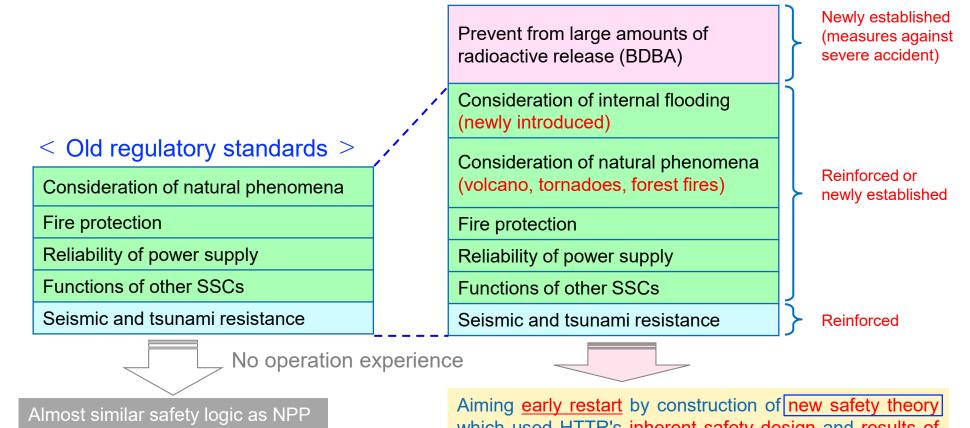
Comparison between previous and new regulatory requirements for NPP

The New Regulatory Requirements tighten measures to prevent or deal with severe accidents and acts of terrorism

			Intentional aircraft crashes	(measures against
C	ory standards > guirements did not cover 'Severe	Measures to control radioactive materials dispersion	terrorism)	
accidents'	it countermeasures are autonomy of		Measures to prevent containment vessel failure	Newly established (measures against
✓ No legal fractional fraction of the second se	amework of continuous safety areness for natural disasters		Measures to prevent core damage (assuming multiple failures)	severe accident)
✓		and the second	Consideration of internal flooding (newly introduced)	
		et al and a second s	Consideration of natural phenomena	
	Consideration of natural phenomena		(volcano, tornadoes, forest fires)	Reinforced or
	Fire protection		Fire protection	newly established
	Reliability of power supply		Reliability of power supply	
	Functions of other SSCs*		Functions of other SSCs	J
GENIX International	Seismic and tsunami resistance		Seismic and tsunami resistance	Reinforced
pertise Collaboration Excellence	*Structures Systems and Components			

*:Structures, Systems, and Components

< New regulatory standards >


20

Nowly established

New regulatory requirements for HTTR

< New regulatory standards >

Aiming <u>early restart</u> by construction of <u>new safety theory</u> which used HTTR's inherent safety design and results of safety demonstration test

https://elaws.e-gov.go.jp/document?lawid=425M60080000021 https://www.nsr.go.jp/data/000172364.pdf

Conformation of Adaptability to New Regulatory Requirements for HTTR

Towards the restart of HTTR

- ✓ Following the nuclear accident at the Fukushima Daiichi nuclear power station on March 11, 2011, revised regulatory requirements were issued by the Nuclear Regulation Authority (NRA) in July 2013.
- ✓ JAEA had submitted the application including evaluation results satisfying the New Regulatory Requirements to the Nuclear Regulation Authority (NRA) on <u>Nov. 26th, 2014</u>.
- ✓ Through many discussions with the NRA, <u>on June 3rd, 2020, JAEA obtained the permission</u> by the NRA for changes to Reactor Installation of the HTTR.
- ✓ It is targeted to restart HTTR in July 2021.

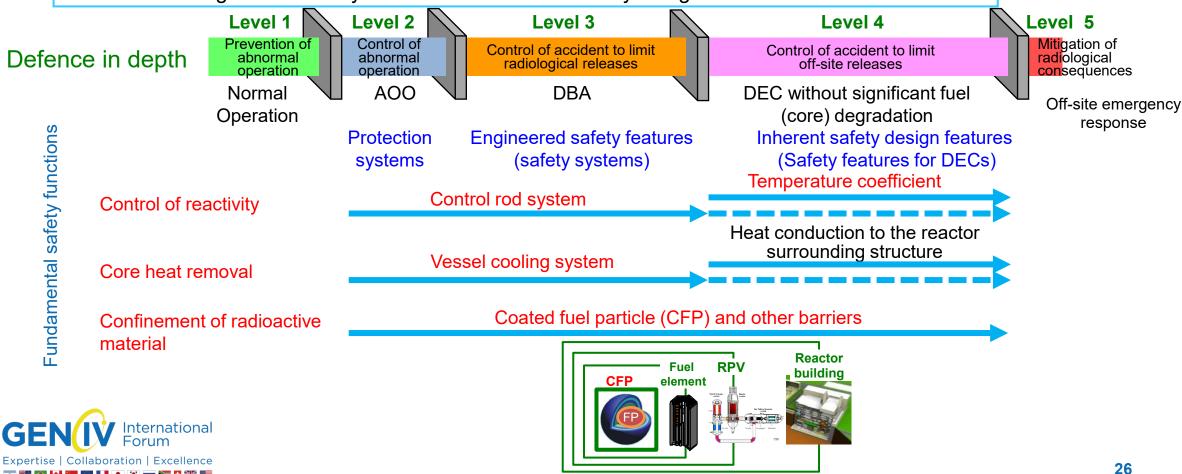
Calendar year	2014	2015	2016	2017	2018	2019	2020	2021
Permission of changes to reactor installation							3, J	une
Operational Safety Programs								
Approval of the Design and Construction Method								
Inspection						Pre-service	inspection	
Restart							Re	estart 🔻

"HTTR Licensing Experience and Commercial Modular HTGR Safety Design Requirements including Coupling of Process Heat Applications", "Towards innovative R&D in civil nuclear fission" SNETP FORUM 2021, 2-4 February 2021

NPP(BWR) and HTTR

	LWR (BWR)	HTTR
Thermal power	3,300 MW	30 MW (1/110, 0.9%)
Power density	50 MW/m ³	2.5 MW/m ³ (1/20, 5%)
Coolant type	Light water	Helium
Coolant temperature	~285 °C	~395/850(950) °C (inlet / outlet)
Coolant pressure	~7 MPa	~4 MPa
Heatsink	Seawater	Atmosphere
Emergency core cooling system	Necessary	Unnecessary
Decay heat removal	Forced circulation pump	Natural heat transfer
NIN International Forum		

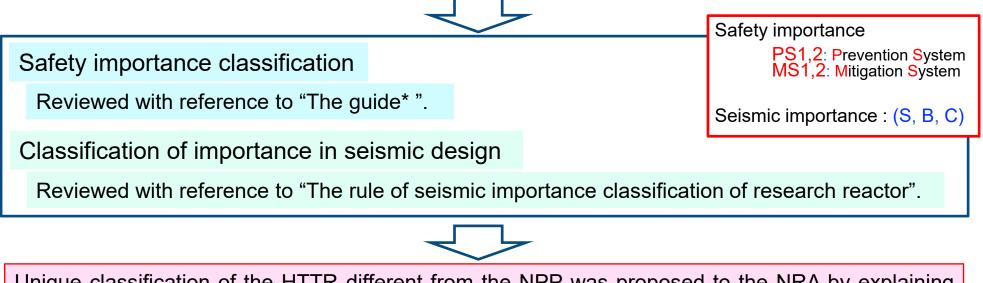
Excellent Feature of Japanese HTGR Technologies, JAEA-Technology 2018-004 High Temperature Gas-cooled Reactors, Volume 5 of the JSME Series in Thermal and Nuclear Power Generation 2021


Safety requirements

Safety requirements		Modular HTGRs	LWRs	
Design extension condition (DEC)		DEC without significant fuel degradation	DEC without significant fuel degradation DEC with core melting	
Reactor shutdown		At least two diverse and independent <u>means</u> (Inherent design features is regarded as one of means)	At least two diverse and independent systems	
Heat removal from core		Passive cooling from the outside surface of reactor vessel (Passive cooling)	In shutdown states: Residual heat removal (Forced cooling) In accident condition : Emergency core cooling (Forced cooling)	
Confinement of Fuel integrity		In operational states and <u>in accident</u> <u>conditions</u>	In operational states (normal operation and AOO)	
radioactive materials	Containment system	Confinement (i.e., vented low-pressure containment)	Containment Vessel	
Additional specific considerations		Mitigation of air and water ingress into core during accidents	-	

Safety design approach

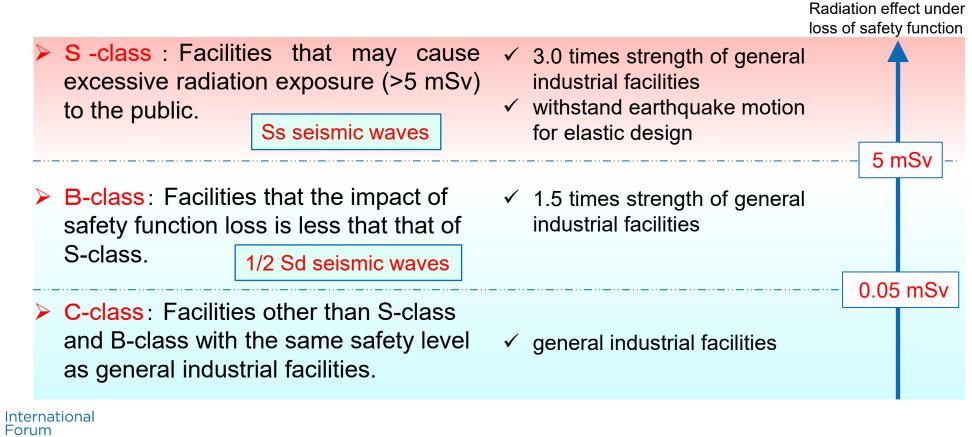
- ✓ No significant fuel (core) degradation
- Fission product is confined by the combination of coated fuel particle and other barriers
- Passive engineered safety features and Inherent safety design features


"HTTR Licensing Experience and Commercial Modular HTGR Safety Design Requirements including Coupling of Process Heat Applications", "Towards innovative R&D in civil nuclear fission" SNETP FORUM 2021, 2-4 February 2021

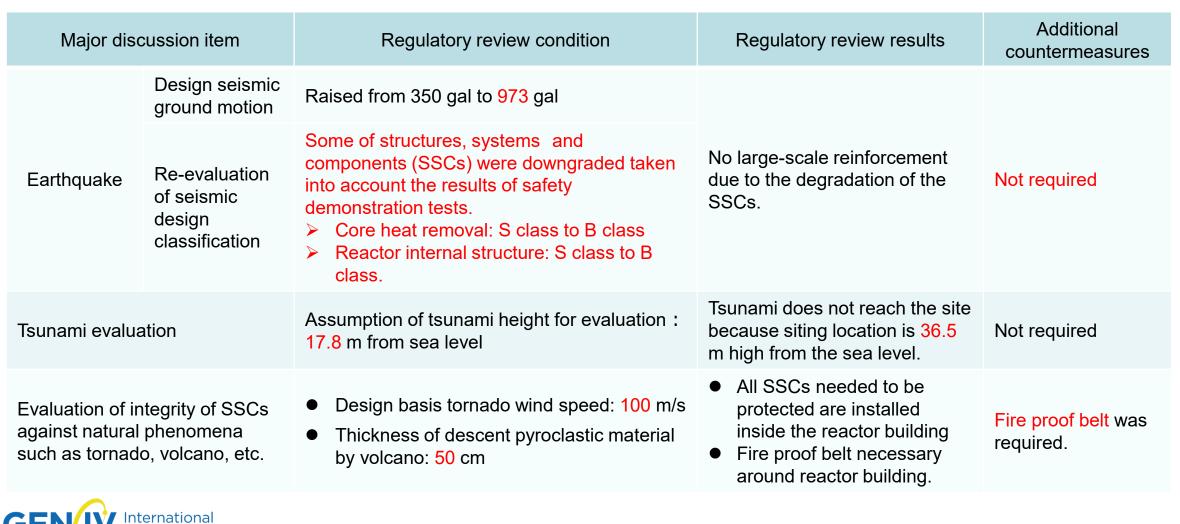
Safety importance classification

HTTR safety characteristic

With lower power density than LWRs (~2.5MW/m³ vs >50MW/m³) and large heat capacity of graphite core, the HTTR can maintain in a stable state when the cooling function is lost completely, and further even the shutdown function and cooling function are lost simultaneously.


Unique classification of the HTTR different from the NPP was proposed to the NRA by explaining the inherent safety design and results of safety demonstration test.

Classification of importance in seismic design


In order to prevent the loss of safety functions and impact of radioactive materials on the public by earthquake, each facility must be designed sufficiently withstand the seismic force according to its importance.

Expertise | Collaboration | Excellence

HTTR safety review results by Nuclear Regulation Authority (1/2)

"HTTR Licensing Experience and Commercial Modular HTGR Safety Design Requirements including Coupling of Process Heat Applications", "Towards innovative R&D in civil nuclear fission" SNETP FORUM 2021, 2-4 February 2021

HTTR safety review results by Nuclear Regulation Authority (2/2)

Major discussion item	Regulatory review condition	Regulatory review results	Additional countermeasures	
Fire	Burnable materials in and around the reactor building was additionally evaluated.	 Amount of burnable materials in the reactor building is limited. Cables necessary to be protected against fire 	Cable protection against fire was required.	
Reliability of power supply	Emergency power supply failure was evaluated.	Decay heat is removable from the core without electricity.	Only partable power	
Beyond design basis accident (BDBA)	 Postulated BDBAs DBA + failure of reactor scram DBA + failure of heat removal from the core DBA + failure of containment vessel 	 No core melt occurs in all BDBAs. 	Only portable power generator for monitoring during accident is required.	
	(DBA : Design Basis Accident)			

HTTR will restart without significant additional reinforcements due to its inherent safety features.

"HTTR Licensing Experience and Commercial Modular HTGR Safety Design Requirements including Coupling of Process Heat Applications", "Towards innovative R&D in civil nuclear fission" SNETP FORUM 2021, 2-4 February 2021

Conclusion

- The new safety theory which used HTTR's inherent safety design and results of safety demonstration test has been approved by Nuclear Regulation Authority (NRA).
- As a result, JAEA obtained permission by NRA toward the restart of the HTTR in conformity to the New Regulatory Requirements on 3rd June 2020.
- HTTR is expected to be restarted without any additional reinforcement due to its own high-level inherent safety features.
- Following the restart of HTTR, number of activities are planned:
 - ✓ Safety demonstration test in OECD/NEA LOFC project.
 - ✓ Technology demonstration test of heat utilization system.
 - ✓ International cooperation and human-resource development utilizing the HTTR.

Application documents

"Pitch your Gen IV Research" Competition

View and Vote for your Favorites

- Watch outstanding videos on nuclear reactors by junior researchers from around the world (4 minutes each)
- "LIKE" your favorites
- Vote through April 30, 2021

Watch on YouTube

tinyurl.com/wwauk74

Watch on BiliBili

tinyurl.com/hdrrvfek

"Progress and Future Prospects toward Deploying GEN IV Reactors as Advanced Nuclear Energy Systems"

GIF Webinar Series 2016–2021 EDUCATION AND TRAINING WORKING GROUP

Special Webinar Event

Expertise | Collaboration | Excellence

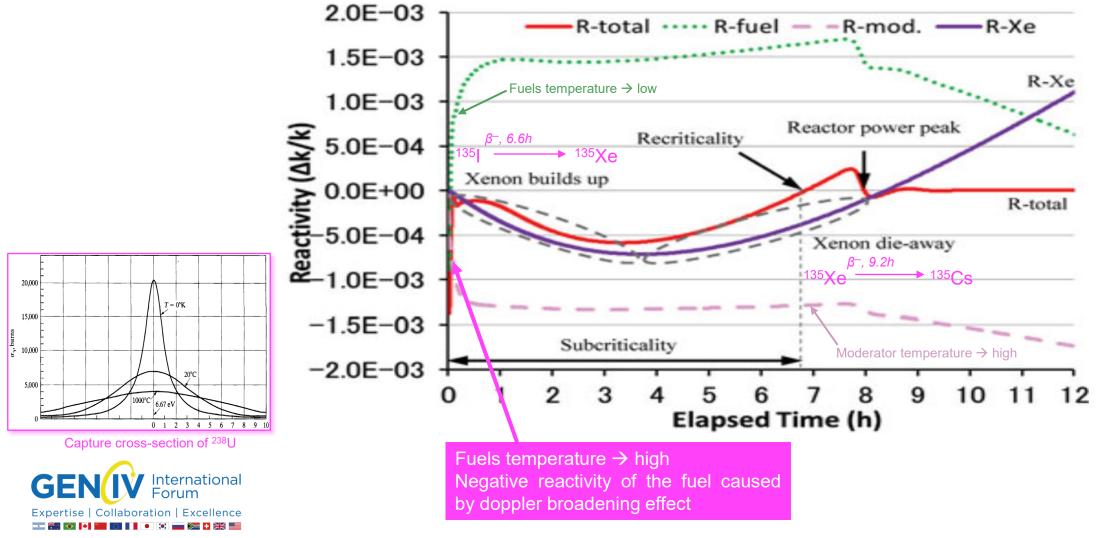
20th Anniversary Celebration with the participation of current and former GIF Chairs

Wednesday, April 28, 2021 8:30 am EDT (UTC-4)

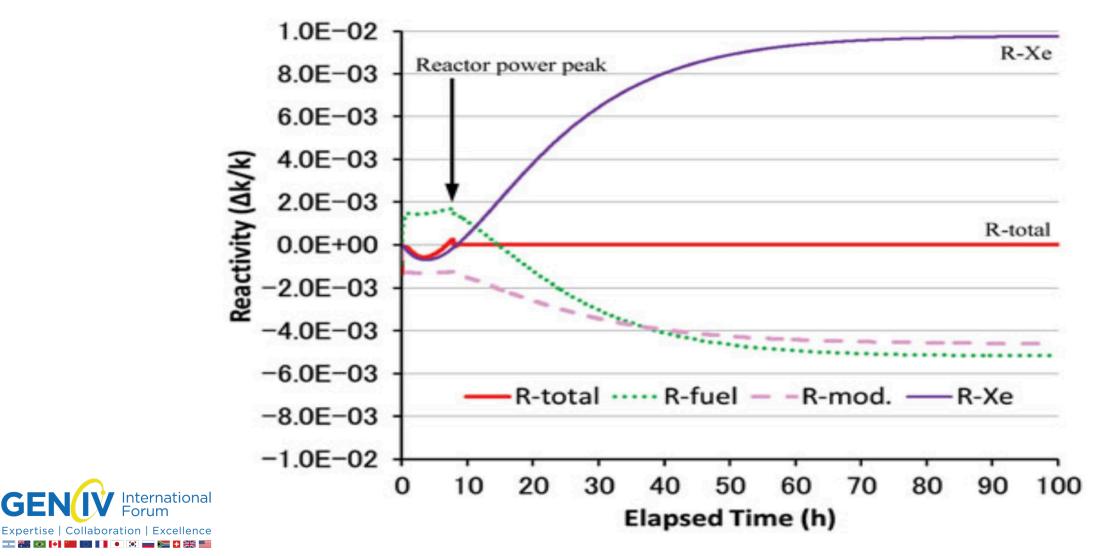
Register at: https://attendee.gotowebinar.com/register/4928218237397954063

Upcoming Webinars

Date	Title	Presenter
28 April 2021	Progress and Future	Panel Discussion by Current
	Prospects toward Deploying GEN IV Reactors as Advanced	and Former GIF Chairs
	Nuclear Energy Systems	
25 May 2021	Advanced Manufacturing for	Dr. Isabella van Rooyen, INL,
	Gen IV Reactors	USA
24 June 2021	In Service Inspection and	Mr. François Baque, CEA,
	Repair Developments for	France
	SFRs and Extension to Other	
	Gen4 Systems	
27 July 2021	Evaluating Changing	Ms. Jessica Lovering,
	Paradigms Across the Nuclear	Carnegie Mellon University,
	Industry	USA

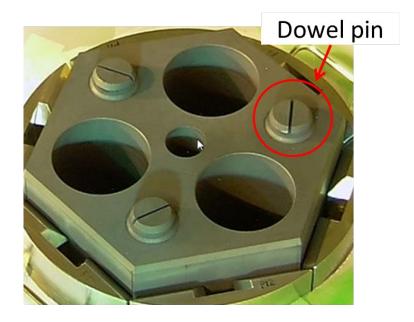


Appendix


Calculation results of LOFC test (1)

GF

Calculation results of LOFC test (2)


Seismic measurement at 2011 earthquake

Location	Floor	Max of acceleration (m/s ²)			
		North-South	West-East	Up-Down	
Reactor building	2F	5.19	3.24	2.30	
	1F	3.27	2.94	2.87	
	B1F	2.58	2.21	1.84	
	B3F	1.98	2.22	1.92	
Inner concrete (CV)	B1F	3.60	2.71	2.58	
	B3F	1.96	1.99	2.13	

Red symbol: exceed design value

@ new regulation \rightarrow 9.73 m/s²

Integrity of the blocks were visually confirmed

Control rod guide block

M.Ono, et al., Journalof Nuclear Engineering and Radiation Science, April 2018, Vol.4 / 020906-3.