

SECURITY STUDY OF SODIUM-GAS HEAT EXCHANGERS IN FRAME OF SODIUM-COOLED FAST REACTORS

Ms. Fang Chen CEA, France 31 July, 2019

Meet the presenter

Ms. Fang Chen is a third year PhD student at CEA Cadarache in the "Service de Technologie des Composants et des Procédés (STCP) " in the "Laboratoire de Traitement et des Risques Sodium (LTPS)."

Her PhD research aims at providing a numerical tool that enables users to describe the structure of the jet (bubble distribution, Mach disk, *etc*.) as a function of the flow rate of the gas leak. The developed compressible multiphase flow model is implemented in CANOP that enables users to generate the Adaptive Mesh Refinement and to calculate in parallel.

Ms. Chen is one of the three students who won the Elevator Pitch Challenge (EPiC) contest at the GIF Symposium meeting in Paris in October 2018, and as a result has been awarded the opportunity to give this presentation.

Outline

■ Context & Objective

- ─ ASTRID Project
- ─ SGHE design
- ─ Objective of present work

• Development

- ─ Predominant physical phenomena
- ─ Multiphase model
- ─ Numerical tool

■ Results

- ─ Validation
- ─ Under-expanded gas jets
- **Exercise Conclusion & Perspectives**

ASTRID Project

(Advanced Sodium Technological Reactor for Industrial Demonstration)

Safety objective: Sodium Water Reaction prevention

- ─ The whole primary circuit (not pressurized) is contained in the main vessel;
- Large boiling margin of sodium;
- High thermal inertia in case of loss of main heat sink;
- ─ Power control by single rod position, no xenon effect, no need of soluble neutron poison;
- Collective dose on a pool type SFR is very low compared to PWR;
- The intermediate system provides an extra containment between the primary circuit and the environment.

■ Two Power Conversion Systems (PCS) studied in parallel:

SGHE design (Sodium Gas Heat Exchangers)

- ─ A 40 kW was tested in CEA (Plancq et al., 2018)
- $-$ ~37.5 % of efficiency
- ─ Bundle of plates in compression: limits the tensile solicitations of isthmuses,
- High compactness,

- ─ Minimize pressure drop on the gas side, vessel acting as header,
- ─ Limitation of loads due to thermal expansion of structures,
- ─ Module access is allowed for the maintenance and ISIR,
- ─ Module structure temperature driven by Na : absence of gas header improves thermomechanical behavior (transitory).

Objective of present work

• Pressure difference between the secondary & tertiary loop:

- -180 bar in gas loop,
- ─ 5 bar in sodium loop.
- Accident scenario (wall crack): gas leak into sodium,

under-expanded gas jet.

■ Safety analysis: acoustic detection of gas leak

Objective of present work

- **Organization:**
	- ─ Viscous Nozzle flow : IMFT
	- ─ Compressible flow (Barrel shock, Mach disk) : IMFT, CEA, IUSTI, ANL
	- ─ Acoustic for leak noise detection : CEA, KTH
	- ─ Liquid droplets behavior in supersonic flow: IUSTI
	- ─ Bubble distribution : ANL and CEA (IKHAR)
- Objective: provide a numerical tool to find the structure of under-expanded gas jet as a function of the flow rate of the gas leak

Development

- **Predominant physical phenomena**
- **Multiphase model**
- **Numerical tool**

International
Forum

Predominant physical phenomena

. Inhomogeneity of the velocity between two phases

 $P_a = 7$ bar, $d_N = 1.0$ mm (Vivaldi et al., 2013)

Predominant physical phenomena

. Inhomogeneity of the pressure of two phases

A flow with dispersed phases (bubbles & droplets)

Track the evolution of the bubble size:

Rayleigh-Plesset Equation:

 $R(t) = \Delta P_{12}$

Predominant physical phenomena

■ Viscous diffusion

─ Taylor-Görtler instability affects the jet structure downstream of flow

F.CHEN | 31/07/2019 | 14

Modelling of the under-expanded jets obtained with the AVBP code. The results colored by the mass flow rate [Chen et al., 2018].

The impacts produced by the underexpanded nitrogen jets in sodium hydroxide [Lécume et al., 1989].

Predominant physical phenomena

- No chemical reactions (concluded from the experiments in ANL)
- No phase change [Chen et al., 2016] (technical note not published)

■ Baer-Nunziato + Drag force + Viscous diffusion + Others?

$$
\frac{\partial \alpha_g}{\partial t} + \overrightarrow{u_I} \overrightarrow{v_A} \alpha_g = 0
$$
\n
$$
\frac{\partial (\alpha_g \rho_g \overrightarrow{u_g})}{\partial t} + \operatorname{div} (\alpha_g \rho_g \overrightarrow{u_g}) = 0
$$
\n
$$
\frac{\partial (\alpha_g \rho_g \overrightarrow{u_g})}{\partial t} + \operatorname{div} (\alpha_g \rho_g \overrightarrow{u_g} \otimes \overrightarrow{u_g} + \alpha_g \overrightarrow{F_g}) = P_I \overrightarrow{v_A} \alpha_g \overrightarrow{v_B} + \overrightarrow{F_p} \overrightarrow{v_B}
$$
\n
$$
\frac{\partial (\alpha_g \rho_g E_g)}{\partial t} + \operatorname{div} (\overrightarrow{u_g} (\alpha_g \rho_g E_g + \alpha_g \overrightarrow{F_g})) = P_I \overrightarrow{u_I} \overrightarrow{v_A} \alpha_g \overrightarrow{v_B} + \overrightarrow{u_g} \overrightarrow{F_p}
$$
\n
$$
\frac{\partial (\alpha_l \rho_l \overrightarrow{u_l})}{\partial t} + \operatorname{div} (\alpha_l \rho_l \overrightarrow{u_l} \otimes \overrightarrow{u_l} + \alpha_l \overrightarrow{F_l}) = P_I \overrightarrow{v_A} \overrightarrow{v_A} \overrightarrow{v_A} \overrightarrow{v_B} + \overrightarrow{F_p}
$$
\n
$$
\frac{\partial (\alpha_l \rho_l E_l)}{\partial t} + \operatorname{div} (\overrightarrow{u_I} (\alpha_l \rho_l E_l + \alpha_l \overrightarrow{F_l})) = P_I \overrightarrow{u_I} \overrightarrow{v_A} \alpha_l \overrightarrow{v_B} + \overrightarrow{u_I} \overrightarrow{F_p}
$$

$$
\begin{vmatrix}\n\alpha & \text{: volume fraction} \\
\rho & \text{: density } (kg/m^3) \\
u & \text{: velocity } (m/s) \\
P & \text{: pressure (Pa)} \\
E & \text{: total energy } (J/kg) \\
F_D & \text{: drag force } (N/m^3) \\
F_v & \text{: viscous diffusion } (N/m^3) \\
g, l, l: gas, liquid, interface\n\end{vmatrix}
$$

GEI

▪ Numerical scheme:

- ─ Rusanov solver
- ─ MUSCL-Hancock

V International

EXTERF Limit the non-physical effects of the fictitious phase in the pure phase

- ─ Shock tube air-sodium
	- o Initial conditions

P: pressure Pa ; ρ : density $\frac{kg}{m^3}$; *u*: velocity m/s

o Parameters of EOS (Albert-Nobel-Stiffened-Gas)

Example 2 random Limit the non-physical effects of the fictitious phase in the pure phase

─ Results

- International
Forum
- **Example 2 random** Limit the non-physical effects of the fictitious phase in the pure phase

─ Corrected results

Numerical tool - CANOP

▪ Two layers in CANOP:

- ─ Low-level layer:
	- ➢ cell-based Adaptive Mesh Refinement (P4est library),
	- \triangleright efficient parallel computation.

- ▶ 1:1 relation between leaves and elements \rightarrow efficient encoding
- Map a 1D curve into 2D or 3D space \rightarrow total ordering
- Recursive self-similar structure \rightarrow scale-free
- \blacktriangleright Tree leaf traversal \rightarrow cache-efficient

─ High-level layer, for implementing numerical schemes:

- ➢ Finite volume method,
- ➢ PDF problems in Fluid Dynamics (for astrophysics, multiphase flows, *etc*). F.CHEN | 31/07/2019 | 20

An AMR example controlled by the gradient of density.

Numerical tool - CANOP

■ General sketch of CANOP framework

machines in IDRIS

Tasks sent to

Results

- **Model validation**
- **Under-expanded gas jets**

Calculation strategy

- Convective part
	- ─ Initial conditions

P: pressure Pa ;
$$
\rho
$$
: density $\frac{kg}{m^3}$; *u*: velocity m/s

─ EOS parameters for two fluids (Albert-Nobel-Stiffened-Gas)

 0.2

 $\overline{0}$

 0.4

0.6

 $X(m)$

 0.8

- Convective part
	- ─ Results

 0.2

 $\overline{0}$

 0.4

0.6

 $X(m)$

 0.8

' <mark>International</mark>
Forum^{...}

- **EX Convective part**
	- ─ Results

- **E** Viscous diffusion
	- ─ Initial conditions

- Viscous diffusion
	- ─ Results

- **Momentum exchange**
	- ─ Initial conditions

Under-expanded gas jets

Experiments (Colleoc 1990)

 $\alpha_l = 1e^{-6}$

International
Forum

```
F.CHEN | 31/07/2019 | 30
```


Experiments (Colleoc 1990)

Under-expanded gas jets

I<mark>nternational</mark>
Forum

Profiles of volume fraction

Under-expanded gas jets **• Gas jets submerged into sodium liquid in SGHE**

Hypothesis:

- ─ Uniform size of droplets & bubbles;
- ─ No fragmentation of particles owning to the shock waves;
- ─ Homogeneity of interface property;
- ─ No turbulent model.

Under-expanded gas jets

• Gas jets submerged into sodium liquid in SGHE

Localization of Mach disk is smoother for a bi-phasic jet in SGHE channel

Under-expanded gas jets

• Gas jets submerged into sodium liquid in SGHE

Conclusion & Perspectives

Conclusion & Perspectives

■ Conclusion:

- ─ A bi-phasic flow model integrating main physical phenomena of an under-expanded gas jet is developed;
- ─ The model is implemented in a numerical tool CANOP, and its capability to reproduce different two phase flow configurations is validated;
- ─ The results of modelling of under-expanded gas jet in a SGHE channel are promising.

■ Perspectives:

- ─ Improvement of the interface properties (pressure & velocity) in function of different dispersed phases (droplets & bubbles);
- ─ Take into account the size inhomogeneity of dispersed phases;
- ─ Experiment IKHAR 2 will be carried out to check the flow behavior in a channel;
- ─ Experiment of gas jets in a SGHE collector.

Thank you for your attention Questions?

Upcoming Webinars

29 August 2019 Lead Containing Mainly Isotope ²⁰⁸Pb: New Reflector for Improving Safety of Fast Nuclear Reactors

25 September 2019 Gen-4 Coolants Quality Control Dr. Christian Latge, CEA, France

23 October 2019 Passive Decay Heat Removal System Dr. Mitchell Farmer, ANL, USA

Dr. Evgeny Kulikov, National Research Nuclear University "MEPhI," Russia