

Sodium Integral Effect Test Loop for Safety Simulation and Assessment (STELLA)

Jewhan Lee Korea Atomic Energy Research Institute Republic of Korea 26 October 2022

Sodium Integral Effect Test Loop for Safety Simulation and Assessment (STELLA)

Jewhan Lee

Korea Atomic Energy Research Institute Republic of Korea 26 October 2022

Meet the Presenter

Dr. Jewhan Lee is currently the project manager of STELLA program and the team leader of the sodium experiment team in the Korea Atomic Energy Research Institute. He earned his Ph.D. in nuclear engineering and established his career as a sodium experiment professional.

He served as a supporter of the Technical Director of EG and now he is a member of GIF SFR-SSC SO-PMB.

His expertise is in the sodium heat transfer of both analytical and experimental works. He has experience on handling and managing the alkali metal and evaluating the performance of various heat transfer systems using various analysis tools. He has a deep understanding of the liquid metal system from component level to system level. His recent interest expands to the innovative instrumentation for high temperature

liquid metal as well as various liquid metal applications, such as a thermal energy storage system.

Introduction - Program Overview -

Introduction

- Program Overview -
- STELLA Program (2009~)
 - A large-scale sodium thermal-hydraulic test program
- Phase 1: STELLA-1 (2012) & SELFA (2016)
 - Sodium component test loop for Separate Effect Test(SET)
 - Thermal-hydraulic performance test for key heat exchangers
 - Validation of thermal-sizing and design codes
- Phase 2: STELLA-2 (2014~)
 - Integral Effect Test(IET) for verification of plant dynamic response
 - Comprehensive review of key safety issues
 - Safety analysis code validation

Introduction

- Reference Reactor -
- Prototype Gen-IV SFR(PGSFR)
 - Technology demonstration for TRU transmutation (2012~2020)
- Main Design Features
 - Sodium-cooled/pool-type reactor
 - Superheated steam cycle
 - 2-loop IHTS/SGS
 - Safety-grade DHRS
 - Independent Passive & Active DHRS

Fuel Handling System

Dual Rotating Plug, Fixed Arm IVTM, Fuel Transfer Port, EVTM

Reactor Enclosure System

RV (H: 15.5m, OD: 10.5m), CV (OD: 11 m), 20cm gap, Forged Solid Head

CRDM

6 Primary CRs, 3 Secondary CRs

Passive shutdown feature was implemented for secondary CRs

Reactor Core and Fuel Design

U-Zr Fuel, 112 FAs, ~90cm Height, ~290EFPD (Eq. core) IVS Locations inside Core Shroud

Decay Heat Removal System

2 PDHRS + 2 ADHRS, Capacity of ~ 2.5%, Cold Pool DHX

ADHRS has more than 50% of passive decay heat removal capability

Primary Heat Transport System

Pool type, 4 IHX, 2 Mechanical Pump, Redan (Clover type)

Intermediate Heat Transport System

2 Loops, 2 SGs(single wall tube), 2 EM Pumps, SWRPRS

Other systems

Sodium Purification Systems for PHTS/IHTS/DHRS, Primary Cover Gas Processing System, Superheated Steam Rankine Cycle for PCS, Instrumentations for Failed Fuel & SG Leak Detections

Introduction - Reference Reactor -

< Schematic of PGSFR Heat Transport System >

Separate Effect Test - \$TELLA-1 & SELFA -

Phase I: Separate Effect Test - Component Test -

- STELLA-1
 - Purpose: performance test of HXs (DHX & AHX)
- Main Features
 - Two key heat exchangers
 - Straight-tube type sodium-to-sodium HX (DHX)
 - Helical-tube type sodium-to-air HX (AHX)
 - Mechanical sodium pump
- Specification

Total Na Inventory	~18 tons	Total Elec. Power	~ 2.5 MW
Design Temp.	600 °C	Heat Capacity of HX	1.0 MW
Design Press.	10 bars	Max. Flowrate	25 kg/s

Phase I: Separate Effect Test

- Component Test -
- SELFA
 - Purpose: performance test of HXs (FHX)
 - Extension of STELLA-1
- Main Features
 - One key heat exchanger
 - Finned-tube type sodium-to-air HX (FHX)
- Specification

Total Na Inventory	~1.5 tons	Total Elec. Power	~ 1.0 MW
Design Temp.	550 °C	Heat Capacity of HX	315 kW
Design Press.	3 bars	Max. Flowrate	6 kg/s

Model Heat Exchangers Design

- Design Requirements -
- Volume Scaling Method
 - Length scale ratio: 1/1
 - Preservation of tube size, pitch, U and LMTD

Parameters	Scaling operators	Ratio (M/P)
Length (Height) Ratio	I _R	1/1
Area Ratio	$a_R (= d_R^2)$	2/5 (1/8*)
Volume Ratio	a _R I _R	2/5 (1/8*)
Velocity Ratio	I _R ^{1/2}	1/1
Gravity Acceleration Ratio	1	1/1
Power & Flowrate Ratio	a _R I _R ^{1/2}	2/5 (1/8*)
Pressure Drop Ratio	I _R	1/1
		* FHX in SELI

Model Heat Exchangers Design - Design Code & Mathematical Model -

- In-house Codes for Thermal-sizing
 - SHXSA
 - Straight-tube sodium-to-sodium HX (DHX, IHX)
 - AHXSA
 - Helical-tube sodium-to-air HX (AHX)
 - FHXSA
 - Finned-tube sodium-to-air HX (FHX)

STELLA Phase I is for V&V of design codes

Mathematical models for HX design

- Control volume approach
 - Mass conservation

 $w_s = const$ $w_t = const$

Momentum equation

 $\Delta P = \Delta P_{acc,i} + \Delta P_{fric,i} + \Delta P_{grav,i}$

• Energy balance:

 $\Lambda O = II \cdot \Lambda I \cdot \Lambda T$

$$\Delta Q = 0 \cdot \Delta A_o \cdot \Delta T_o$$

$$\begin{cases} \Delta Q = w_t \cdot (i_{t,in} - i_{t,out}) \\ \Delta Q = w_s \cdot (i_{s,out} - i_{s,in}) \end{cases}$$

$$\Delta Q = h_t \cdot \Delta A_i \cdot (T_t - T_{t,F}) = h_{t,F} \cdot \Delta A_i \cdot (T_{t,F} - T_i) \\ = \Delta A_o \frac{2 \cdot k}{d_o} \cdot \frac{T_i - T_o}{\ln(d_o/d_i)} = h_s \cdot \Delta A_o \cdot (T_{s,F} - T_s) \end{cases}$$

$$Muture \int_{T_{shell,in}} \int_{Fouling} \int_{T_{ube,out}} \int$$

Model Heat Exchangers Design

- Physical Model -

Results of Separate Effect Test - Heat Exchanger Performance -

- Validation of HX codes
- SHXSA
 - Excellence in DHX outlet temperature (~1.8% & ~0.7% deviation)
 - Good agreement in heat transfer rate (~4.4% deviation, Max.)
- AHXSA
 - Good agreement in sodium outlet temperature (~6% deviation)
 - Larger discrepancy in air outlet temperature (~10% deviation)
- FHXSA
 - Good agreement in sodium outlet temperature (~7% deviation)
 - Larger discrepancy in air outlet temperature (~14% deviation)

Results of Separate Effect Test - Natural Circulation Flow -

- Investigation of natural circulation flow build-up and flow transient in closed loop system
- Validation of 'FLOWTRAN' code
 - Good agreement in trend
 - But relatively low prediction at ~10%

Integral Effect Test - STELLA-2 -

Phase II: Integral Effect Test - System Test -

- STELLA-2
 - Purpose
 - Comprehensive review of safety issue
 - Safety analysis code validation
- Capability
 - Simulation of transient response for both forced and natural circulation modes
 - Observation of plant dynamic behaviors for offnormal conditions
 - Decay heat removal performance
 - Identification of multi-dimensional effect during transient

Test Scope & Conditions

- Test Matrix -
- Classification of Key Safety Event
 - Based on the event categorization of PGSFR
- Potential Transients for Simulation
 - DBAs (LOF, LOHS, PHTS pump discharge pipe break)
 - Total loss of safety-grade DHRS

Key Event Categories	Test Items of Consideration				
	- Single PHTS pump failure				
LOF	- Dual PHTS pumps failure				
	- Dual PHTS pump failure + (n-m) DHRS loop failure				
	- Steam Generator F/W failure				
10110	- SG F/W trip + (n-m) DHRS loop failure				
LOHS	- Station Blackout: 2.5 DHRS loop failure				
	- IHTS Isolation or pipe break				
Primary pump Pipe	- Single PHTS pump discharge pipe rupture (DEGB)				
Break	- Pipe rupture + (n-m) DHRS loop failure				
Total Loss of DHRS	 Failure of all passive & active DHR loops RVCS heat removal only (F ~ 10⁻⁶) 				

Catg'y	Freq./RY	Event				
		11111	CR Withdrawal with normal speed (Full power, 30% power, start-up)			
		Power	Control rod drop			
		Transients	OBE-induced reactivity perturbation			
			Inadvertent acceleration/reduction of one or two primary			
AOO	E> 10-2	LOF	Coastdown of one or two primary pump (Spurious trip)			
	1 2 10		Loss of feedwater on all SGs			
1000		LOHS	Loss of offsite power (< 2 hr)			
			Small tube leak			
-		Local faults	Fuel pin failures under normal and design basis fault conditions			
		Others	Off-normal cover gas pressure in PHTS or IHTS			
		Power	Single control rod withdrawal at max. speed			
		Transients	Inadvertent opening (steam bypass or steam line break)			
		LOF	Sudden seizure of one primary pump			
			Loss of offsite power (2 hr < period < 72 hr)			
			Steam line break			
		LOHS	Inadvertent actuation of the SWRPRS			
			Feedwater line break in one feedwater train			
			SG Large tube leak ~ DEG break of SG single tube			
			Primary sodium leak in auxiliary system (cold trap)			
DRA	10-4 < F	Boundary	IHTS sodium ingression into PHTS via IHX tube failure			
Class	·• _ ·	Leak	DHRS sodium ingression into PHTS via DHX tube failure			
Class	< 10-2		Leakage through upper closure penetration seals			
			Overpower element (enrichment error)			
			Fuel loading error (FA loading in improper position)			
			Fuel pin failures under normal and design basis fault			
			condition			
		Local faults	Design basis fuel handling accident			
			FA drop into Rx vessel during refueling			
			Impairment through trial of FA loading onto existing FA position			
			Leakage of the cover gas during refueling			
-		Power	SSE-induced reactivity insertion and pump trip (Single rod			
		Transients	withdrawal with rod stop failure)			
200	1	LOF	DEG break in piping line from PHTS pump to core			
DBA	10 ⁻⁶ ≤F		Large leak due to spontaneous ruptures of several tubes (up			
Class 2	< 10-4	LOHS	to five tubes)			
1.2.2	~ 10		than 72 hr)			
		Boundary	Reactor vessel leak into the containment vessel			
		Leak	Leakage of Rx vessel charging gas circuit (air ingress)			
		Power Transients	Unprotected single rod withdrawal at power (ATWS)			
	Nation	LOF	Unprotected loss of power to two PHTS pumps			
DEC	10 ⁻⁸ ≤ F	(ULOF)	Unprotected spurious one PHTS pump trip			
DEC	< 10-6		Unprotected spurious one IHTS pump trip			
	- 10	LOHS	Unprotected turbine trip			
		(ULOHS)	Unprotected loss of power to two IHTS pump trip			
1			Unprotected loss of normal feedwater due to pump failure			

Scaling Methodology

- Pre-evaluation & Fundamentals -

- Minimization of Cost Factors
 - Power, Space, and etc.
- Evaluation of Reduced- over Full-height
 - Volume scaling law (Nahavandi et al., 1979)
 - Height, Velocity, Gravity : 1/1
 - Real time scale
 - Linear scaling law (Carbiner & Cudnik, 1969)
 - Aspect ratio : 1/1

International

Expertise | Collaboration | Excellence

GFN

- Reduced time scale & Increased gravity scale
- 3 level scaling law (Ishii & Kataoka, 1984)
 - PUMA (Purdue Univ), ATLAS (KAERI)
 - Suitable for natural circulation phenomena

< Pros & Cons of Reduced-height scale over a Full-height concept >

Capable of multi-dimensional T/H behavior due • to a close aspect ratio to the prototype -

 Suitable for preserving natural circulation phe nomena

Pros

- → Easier control of Gravity to Friction force by a djusting flow resistances
- Easy to accommodate key components and various measurement devices in the facility

 Velocity & Time are not preserved
 → Not appropriate to simulate a fast transient (just after Rx. Shutdown) and reactivity

Cons

- feedback related event Heater power density(heat flux of heat source) are not preserved due to a reduced length scale
- → Distortion of slow transient behaviors
- There may be lots of distortions in a simulation of sequential events
 → e.g.) time of event such as initiation, delay, duration, etc.

Volume scaling law is a special case of Ishii's scaling law

Reference:

Yoon B.J., 2007, "Introduction of Scaling Methodology for Thermal Hydraulics Test," KAERI Seminar (August 16, 2007)

Scaling Methodology

- 3 level Scaling Law -
- 1st Step : Global Scaling
 - Geometric condition, time scale, and TH parameters
- 2nd Step : Inventory Scaling
 - Mass and energy inventory
- 3rd Step : Local Phenomena Scaling
 - Heat transfer in HXs, Flow and energy mixing in pool, Heat loss, and etc.

Dimensionless Conservation Equations

Key Dimensionless Numbers

Scaling Results - Requirements for STELLA-2 -

-
- System Scale
 - Height 1/5, Volume : 1/125
- Identical working fluid & pressure/temperature conditions
- Preservation of general arrangement of RI & components
- Simulation of decay heat generation
 - 7% of scaled full power
- Simulation of PHTS pump coast-down
- Simulation of PHTS pump pipe break
- Simulation of RVCS heat removal

< Scaling operators from Global scaling criteria >

Parameters	Scaling operators	Parameters	Scaling operators	
Length	l_R	Core power	$a_R l_R^{1/2}$	
Diameter	d_R	Mass flow rate	$a_R l_R^{1/2}$	
Area	$a_{R} (= d_{R}^{2})$	Pressure drop	l_R	
Volume	$a_R l_R$	Aspect ratio	$l_R a_R^{1/2} $	
Temp. distribution	1	Time	$l_{R}^{1/2}$	
Power/volume	$1/l_R^{1/2}$	Velocity	I _R ^{1/2}	

< Major scaling characteristics >

Parameters	Scaling operators	Ratio (M/P)
Length Ratio	l_R	1/5
Area Ratio	$a_R (= d_R^2)$	1/25
Volume Ratio	$a_R l_R$	1/125
Temperature Rise/Drop Ratio	1	1/1
Time Ratio	$l_R^{1/2}$	1/2.24
Velocity Ratio	$l_R^{1/2}$	1/2.24
Gravity Acceleration Ratio	1	1/1
Core Power Density Ratio	$1/l_R^{1/2}$	2.24
Power Ratio	$a_R l_R^{1/2}$	1/55.9
Flow rate Ratio	$a_R l_R^{1/2}$	1/55.9
Pressure Drop Ratio	I_R	1/5
Aspect Ratio	$l_R / a_R^{1/2}$	1.0

What to be seen?

- Dynamic Reactor Response after Shutdown
 - Short- and long-term cooling capability
 - Asymmetric DHR operation
 - (n-m) loop operation
 - Flow and heat transfer characteristics in the system
 - Throughout the core, various heat exchangers, components & piping, and etc.
 - Flow distribution and energy mixing in sodium pool
 - Multi-dimensional effect

STELLA-2 - Design Feature -

GENUX International Forum Expertise | Collaboration | Excellence

Systems

- Main vessel (1), sodium loops (8), 5 different types of sodium HXs, and auxiliary systems
- Design Temperature & Pressure
 - 600 °C & 5 bars
- Facility Dimension (L×W×H)
 - 18m×15m×30m
- ✤ Main Vessel Size
 - 2.2m in dia. & 3.7m in height
- Sodium Inventory
 - 15 tons
- ✤ Max Flowrate
 - 25 kg/s
- Power
 - Core power : ~500 kW
 - Total : ~3.0 MW

STELLA-2 - Design Feature -

STELLA-2

- Electric Core Simulator Design -

- Heater Rod
 - Optimization with high conductivity insulator (BN)
 - Identical rod dia. to reference reactor fuel pin
- Rod Assembly and Core
 - 19 assemblies + unheated structure (reflector, shield)
 - 36 pins + 1 dummy for instrumentation
 - Total 684 rods (19 dummies)

Demonstern	Prototype	Model Core	Ratio [M/P]	
Parameters	[P]	[M]	(Actual)	(Ideal)
Total power [MW]	392.2	7.016	1/55.9	1/55.9
Rod diameter [mm]	7.4	7.4	1/1	+
Pitch to diameter	1.140	1.142	1/1	÷
Total no. of rod	24304	684	1/35.5	1/33.1
Whole core area [m ²]	5.330	0.196	1/27.2	1/25
Active core height [m]	0.900	0.18	1/5	1/5

STELLA-2 - RV & RI Design -

- PHTS
 - Vessel, Redan, Separation plate, Reactor Head, Inlet Plenum, Pump path, UIS, and etc.
- Preservation of Similarity
 - Sodium inventory to conserve thermal inertia and mixing effect
 - Relative elevations for simulation of natural circulation flow inside vessel

< RI vertical position comparison>

Florente	ST2 /	PGSFR	Distortion		
Elements	top	bottom	top	bottom	
Redan	0.195	0.200	-2.5%	0.0%	
UIS shell	0.200	0.168	0.0%	-16.0%	
Pump	0.209	0.200	4.5%	0.0%	
Core	0.193	0.201	-3.5%	0.5%	
Inlet plenum	0.201	0.199	0.5%	-0.5%	
RV	0.200	0.204	0.0%	2.0%	

STELLA-2 - Pump Simulation Loop Design -

- Components
 - EMP, valves, EMF, tanks, annular pipe
- Characteristics
 - Coastdown flow simulation
 - Identical performance of mechanical pump
- Preservation of Similarity
 - Pressure drop
 - Intake/Discharge position
 - Dimensionless numbers (Ri, Fi, Eu)

STELLA-2 - Sodium Loop Design -

- IHTS & DHRS
 - Loop design under global scaling criteria
 - IHTS, Passive DHRS, and Active DHRS

YC XC

- Preservation of Similarity
 - Relative elevation
 - Sodium inventory inside pipe
 - Dimensionless numbers
 - Eu number
 - *Ri* number

STELLA-2 - Heat Exchangers Design -

- Sodium-Sodium Heat Exchanger
 - IHX & DHX
- Sodium-Air Heat Exchanger
 - AHX, FHX, UHX
- Preservation of Similarity
 - Total heat transfer coefficient (U)
 - Temperature difference (LMTD)
 - Dimensionless numbers (St, Bi, Ri)

GENIX International Forum
Expertise Collaboration Excellence
== 👬 🔯 🚺 🛲 🚮 🚺 💿 🐼 🚃 🏣 🕄 💥 📟

Parameter		IHX			Ideal	- H
		PGSFR	STELLA-2	M/P	ratio	- 6
Heat transfer r	ate, Q (kWt)	97.8x10 ²	1,750	0.018	0.018	- 2
U (W/m	² /K)	9082.7	9055.3	0.997	1.0	
Heat transfer	Area (m²)	323.87	5.916	0.0183	0.018	- 11
ATLMIT	(7)	33.42	32.87	0.984	1.0	- 11
Tube Arran	gement	Stra	ight & Vertica	al	P	- 11
Pitch to Diamet	er ratio (P/D)	1.5	1.5	1.0	P	- 11
Effective tube	length (m)	3.8	0.784	0.206	0.2	- HI
Tube bundle	height (m)	1	1		N/A	1
Number of t	ubes (EA)	1,512	174	0.1151	N/A	
No. of Gri	id plate	5	2		N/P	- 81
Flow hole dia	meter (mm)	8.5	6.0	0.5882	N/P	
No. of Flow	holes (EA)	3,024	348	0.1151	N/P	
	ID (m)	0.0155	0.0118	0.7613	N/A	
Heat transfer	OD (m)	0.0179	0.0138	0.7709	N/A	
Tube	thck. (mm)	1.2	1.0	0.8333	N/A	
	Material	T91	T91	Y	Y	11111
Flow rate	tube-side	391.08	6.976	0.0178	0.019	1.000
(kg/s)	shell-side	496.05	8.856	0.0178	0.018	
Velocity	tube-side	1.571	0.420	0.267	0.447	
(m/s)	shell-side	1.048	0.273	0.260	0,447	
Pressure drop	tube-side	12,529	1,007	0.080	0.2	
(Pa)	shell-side	12,870	2,185	0.170	0.2	-

Berry			AHX		
Parameter		PGSFR	Model	M/P	ratio
Heat transfer r	ate, Q (kWt)	2.5x10 ²	43.56	0.0174	0.018
U (W/m	1 ² /K)	48.27	43.31	0.8972	1.0
Heat transfer	Area (m²)	482.2	8.653	0,0179	0.018
ATLMTD	(7)	106.17	115.34	1.086	1.0
Tube Arran	gement	He	lical coil typ	e	P
(P/D), &	(P/D) _T	1.71 & 2.5	1.71 & 2.5	1.0	P
Effective tube	length (m)	23.76	4.752	0.200	0.2
Tube bundle	height (m)	4.13	0.826	0.200	0.2
Number of t	ubes (EA)	190	42	0.221	N/A
Average Bund	le height (m)	4.19	0.826	0.197	0.2
Tube inclined a	ngle (degree)	9.9	9.8	0.990	1.0
Tube outside for	uling (W/m/K)	2841	2841	1.0	1.0
Inner Cylind	er OD (m)	2.84	0.3185	0.112	0.2
Shroud	ID (m)	3.86	0.595	0.154	0.2
	ID (m)	0.0307	0.0114	0.3713	N/A
Heat transfer	OD (m)	0.034	0.0138	0.4059	N/A
Tube	thck. (mm)	1.65	1.2	0.7273	N/A
	Material	T91	STS316	N	Y
Flow rate	tube-side	17.54	0.3138	0.0179	0.018
(kg/s)	shell-side	10.65	0.1950	0.0183	0.018
Velocity	tube-side	0.139	0.082	0.5899	0,447
(m/s)	shell-side	5.164	2.515	0.4870	0.447
Pressure drop	tube-side	466	73	0,1567	0.2
(Pa)	shell-side	140	28	0.2000	0.2

2000			DHX		Ideal
Parameter		PGSFR	Model	M/P	ratio
at transfer rate, Q (kWt)		2.5x103	44.73	0.0179	0.018
U (W/m²/K)		6240.25	6568.72	1.0526	1.0
leat transfer Area (m²)		13.44	0.232	0.0173	0.018
ATLMTO	(2)	29.67	29.26	0.986	1.0
Tube Arrangement		Str	aight & Vert	ical	P
h to Diameter ratio (P/D)		1.5	1.5	1.0	P
fective tube length (m)		1.733	0.356	0.2054	0.2
ube bundle	height (m)	1.733	0.356	0.2054	0.2
Number of th	ubes (EA)	114	12	0.1053	N/A
No. of Gri	id plate	2	1	0.5	N/P
low hole diameter (mm)		11.5	5.0	0.5882	N/P
No. of Flow holes (EA)		228	24	0.1182	N/P
at transfer	ID (m)	0.0184	0.014	0.7609	N/A
	OD (m)	0.0217	0.0173	0.7972	N/A
Tube	thck. (mm)	1.65	1.65	1.0000	N/A
	Material	T91	T91	Y	Y
low rate	tube-side	17.54	0.3140	0.0179	0.018
(kg/s)	shell-side	12.76	0.2280	0.0179	0.018
Velocity	tube-side	0.645	0.189	0.2930	0.447
(m/s)	shell-side	0.233	0.062	0.2661	0.447
ssure drop (Pa)	tube-side	798	54	0.0677	0.2
	shell-side	242	16	0.0661	0.2

Parameter			Ideal		
		PGSFR	Model	M/P	ratio
Heat transfer r	ate, Q (kWt)	2.5x101	44.05	0.0176	0.018
U (W/m	² /K)	26.81	24.73	0.9224	1.0
Heat transfer Are	a with Fin (m2)	656.34	11.642	0.0177	0.018
ΔΤ.,	(°C) m	141.21	152.31	1.079	1.0
Tube Arrangement		Straight-	P		
(P/D), &	(P/D);	2.05 & 2.5	2.05 & 2.5	1.0	P
Finned tube len	gth, total (m)	8.0	1.6	0.200	0.2
Total height of th	ube banks (m)	2.118	0.827	0.390	0.2
Number of t	ubes (EA)	96	18	0,1875	N/A
Tube inclined a	ngle (degree)	7.2	7.2	1.0	P
Tube outside for	uling (W/m/K)	2841	2841	1.0	1.0
Fin heigh	t (mm)	15.0	8.5	0,557	N/A
Fin thickne	ss (mm)	1.5	0.8	0.533	N/A
No. Fins per unit	length (#/m)	152	220	1.447	N/A
Fin spacin	ig (mm)	5.08	3.75	0,738	N/A
Total # Fins per	each tube row	1216	352	0.289	N/A
and the second	ID (m)	0.0307	0.0149	0.4853	N/A
Heat transfer	OD (m)	0.034	0.0191	0.5618	N/A
(Bare tube)	thck. (mm)	1.65	2.1	1.2727	N/A
(Material	T91	STS316	N	Y
Flow rate	tube-side	17.54	0.3138	0.0179	0.018
(kg/s)	shell-side	13.63	0.2657	0.0195	0.018
Velocity	tube-side	0.275	0.111	0.4036	0,447
(m/s)	shell-side	6.788	5.496	0.8097	0.447
Pressure drop	tube-side	742	112	0.1509	0.2
(Pa)	shell-side	452	62	0.1372	0.2

STELLA-2 - Design Evaluation -

- Scoping Analysis .
 - Transient comparison using system code -
- CFD Analysis
 - Various numerical simulations
- Water Mock-up Tests

< UHX >

STELLA-2 - Specialty & Uniqueness -

- Pipe Break Simulation
 - Specially designed 3-way valve
 - Universal joint long-reach arm
 - Short actuation time

- Ex-vessel Cooling Simulation
 - Reactor Vessel Cooling System(RVCS)
 - Air flow jacket
 - Flowrate is controlled by blowers

Status & Future Plan

Past - Construction & Installation -

Past - Construction & Installation -

Now - In operation -

Example of STELLA-2 Result

- Preliminary Analysis -
- System Code Analysis
 - Codes of concern : MARS-LMR, GAMMA+

2.1

2.6

2.4

2.2

2.0

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Time, s

ĝ

PSLS Flowrate,

- Representative DBE : LOF
- Event sequence
 - PHTS Pump stop
 - IHTS Pump stop
 - UHX stop
 - Reactor trip & decay
 - DHRS starts to operate
 - with various combination

Time, s

Time, s

Future

- International Collaboration -
- GIF SFR System
 - Benchmark calculation activity proposal (SO PMB)
- IAEA TWG-FR
 - Co-ordinated Research Project (CRP) proposal next year
- Mutual Collaboration with Research Groups
 - INL, ANL, CEA, JAEA
- Collaboration with Industry
 - ARC, Terra Power, etc.

Summary

- STELLA Program was launched to support the development of first SFR in Korea
 - It will serve as a strong supporter of PGSFR licensing in future
 - It is a basic infrastructure for sodium system
- STELLA-1 accomplished its mission successfully
 - Key components for safety of SFR was tested
 - Code V&V completed to assure the calculation results
- STELLA-2 is ready to achieve valuable data
 - Potentially be used for licensing
 - Various activities and works planned under international collaboration framework

Thank you!

Jewhan LEE leej@kaeri.re.kr

Upcoming Webinars

Date	Title	Presenter
28 November 2022	Geospatial Analytics for Energy and Resilience Analysis	Dr. Mark Deinert, Colorado School of Mines, USA
14 December 2022	The Mechanisms Engineering Test Loop (METL) facility at Argonne National Lab	Dr. Derek Kultgen, Argonne National Laboratory, USA
25 January 2022	Molten Salt Reactors Taxonomy and Fuel Cycle Performance	Dr. Jiri Krepel, Paul Scherrer Institute, Switzerland

