

Geospatial Analytics for Energy and Resilience Analysis

Dr. Mark Deinert Colorado School of Mines United States 28 November 2022

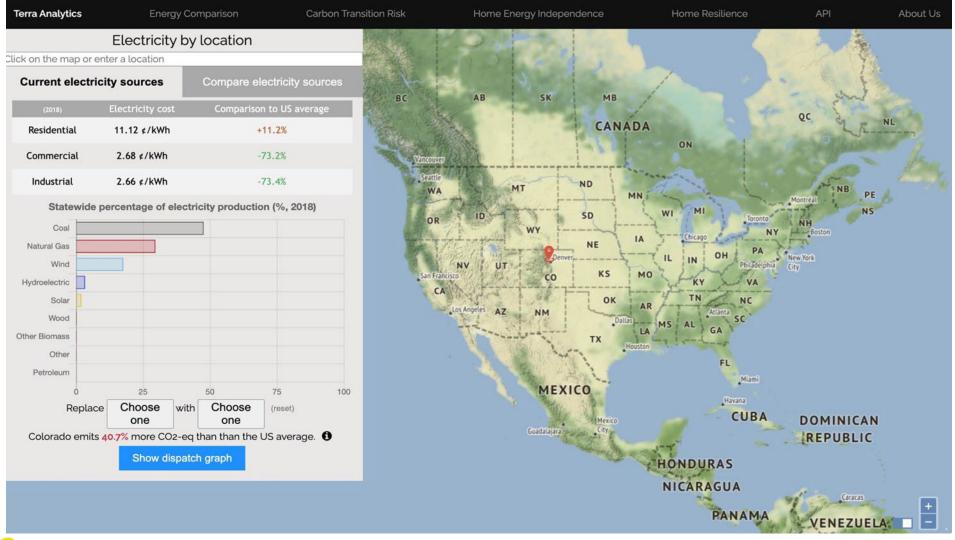
Geospatial Analytics for Energy and Resilience Analysis

Dr. Mark Deinert Colorado School of Mines United States 28 November 2022

Meet the Presenter

Mark Deinert is an Associate Professor in the Nuclear Science and Engineering program at the Colorado School of Mines. He holds external appointments in Electrical Engineering at Cornell University and as a consultant with the World Bank on climate resilience. His research is focused on modeling and simulation of complex systems with applications to nuclear power, nuclear security, distributed energy systems and risk analysis.

Geospatial Analytics for Energy and Resilience Analysis


Started NEUP project

- Develop a web-based visualization tool for comparing energy systems by location.
- Application programmer interface to enable third party developers to request data for educational, nonprofit or policy analysis uses.

GEN IV International Forum

GENUX International Expertise | Collaboration | Excellence

GEN IV International Forum

Terra Analytics	Energy Compa	arison		Carbon Tran	ion Risk Home Energy Independence	Home Resilience	API	About Us
Electricity by location								
Click on the map or enter a location						A THE		
Current electricity source	es Co	mpare e	lectricity	sources	BC AB SK MB		·	
Report	Comparison		Inpu	s		4	QC	See.
					Vancouver Seattle WA MT ND	ADA	Montréal	A A A A A A A A A A A A A A A A A A A
Capacity Factor	%	92.0	21.2	63.3	OR ID SD	WI MI Toronto	NH	
LCOE	\$/kWhe	0.0547	0.1135	0.0453	NV UT	IA Chicago IL IN OH PA Philadeiphia	New York City	
LCOE (with CO2 tax)	\$/kWhe	0.0548	0.1144	0.0502	San Francisco CO KS	MO KY VA	cij	
Land Use	m ² /MWe	3.6	47209.2	1.4	Los Angeles AZ NM	AR TN NC Altanta SC LA MS AL GA		
Greenhouse Gas	gCO ₂ /kWhe	18.0	66.0	359.2		Houston		
EX (capacity factor weighted)	\$/kWe	6168.6	11415.3	2507.0		FL		
CAPEX	\$/kWe	5675.1	2418.0	1587.3	MEXICO	Miami Havana		
					Mexico	CUBA	DOMINICAN	
	. P				Guadalajara City	and the second second	REPUBLIC	
						HONDURAS		
						NICARAGUA PANAMA		+

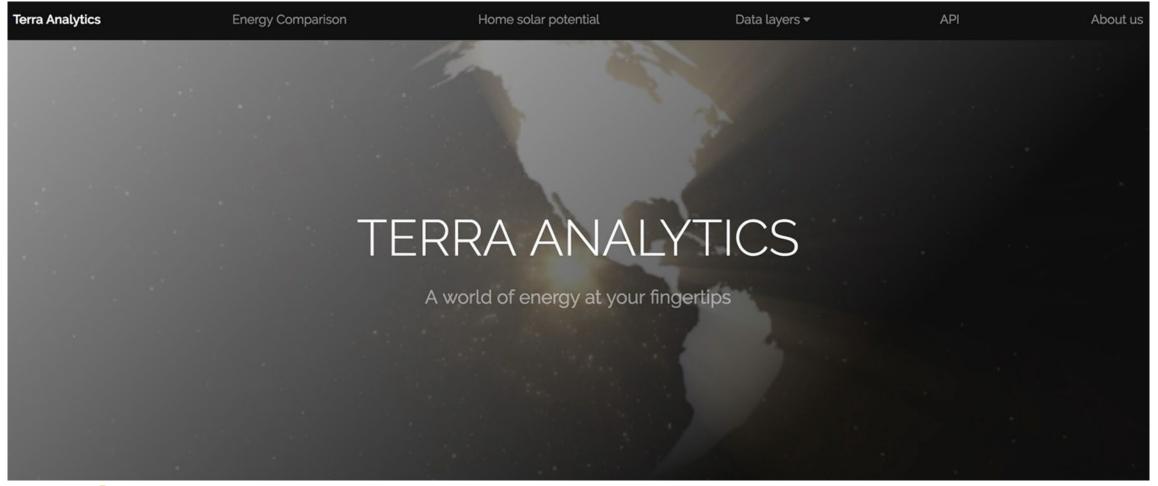
Energy Systems are Complex

- Land use restrictions
- Proximity to needed infrastructure or geology
- Proximity to skilled labor
- Receptive neighbors
- Potential hazards

Energy Systems are Complex – Climate Change

How much damage can we expect, can we avoid it, and what are the associated costs?

- Direct financial costs (asset damage)
- *Time cost* (repair)
- Indirect financial cost (supply chains)
- Political, social costs (fear, policy shifts)



Energy Systems are Complex – Climate Change

- Changes in climate zone can affect construction codes
- Changes in heating and cooling days affect energy use
- Changes in river, ocean and lake temperatures can affect power systems
- Changes in coastline and flood plains can affect power systems
- Changes in precipitation can affect river flows and power systems

Understanding Complexity

Understanding Complexity - Data

Resources

- Wind
- Solar
- Precipitation
- Aquifers
- Oil/Gas Fields
- Geology
- Soil

Infrastructure

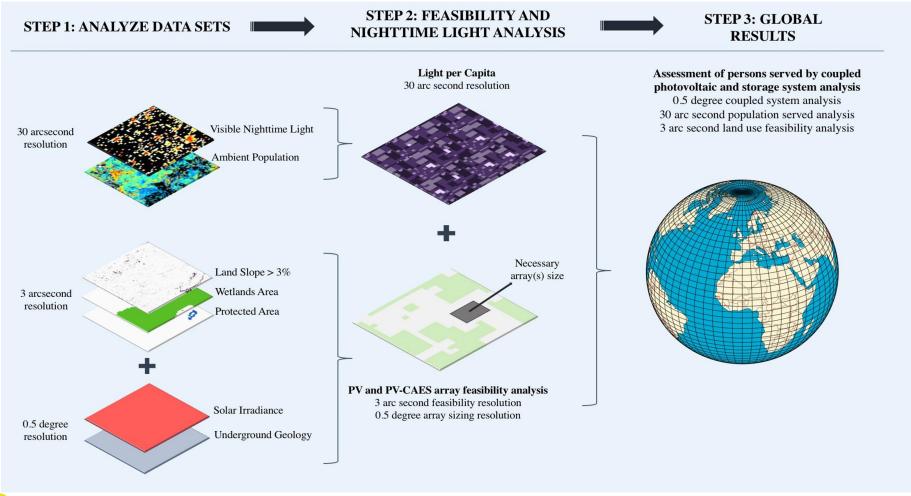
- Grid
- Generation
- Roads
- Pipelines
- Rail
- Air
- Ports
- Hospitals
- Schools
- Communication

Hazards

- Wind
- Heat
- Drought
- Rain/Flood
- Fire
- Seismic
- Tsunami
- Climate

Social

- Crime
- Conflict
- Education
- Longevity
- Employment
- Litigation rates
- HDI
- Costs

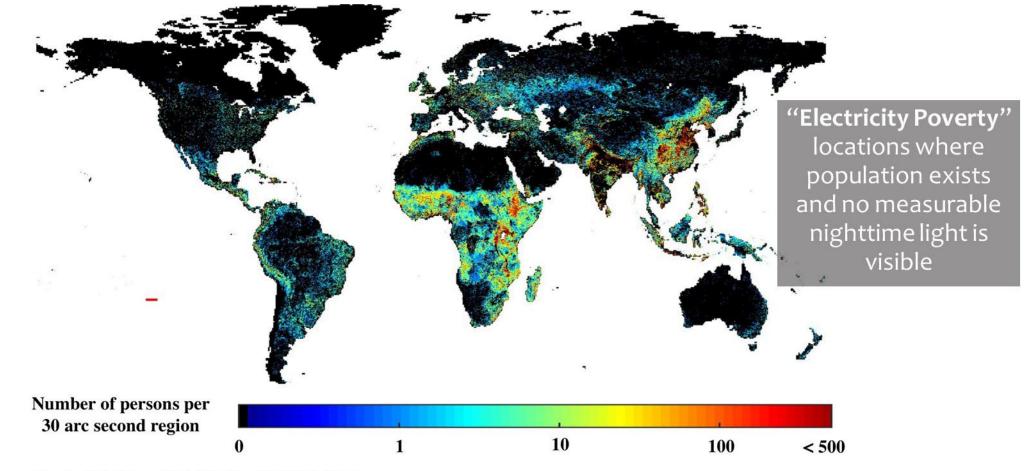

Terra Analytics – Just Data?

- No
- Energy flow and economic models
- Data scaling for spatial and temporal analyses
- Algorithms for data filtering
- Algorithms for identifying climate sensitivity and natural hazards

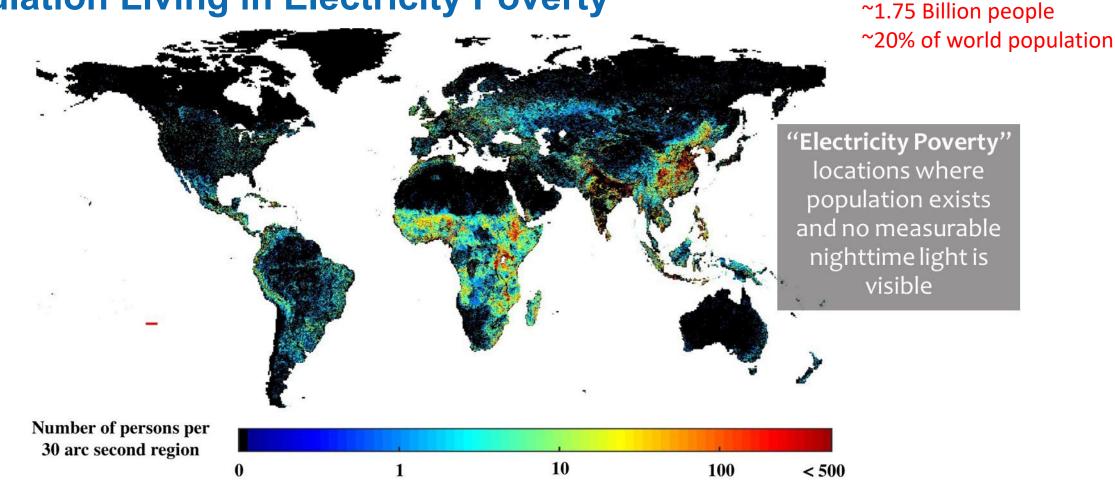
GEN IV International Forum

Terra Analytics – Geospatial Analysis

GENUX International Forum


- Global Data on natural hazards, infrastructure, resources demographics, climate change
- Risk disclosure
- Probabilistic risk analysis
- Decision analysis

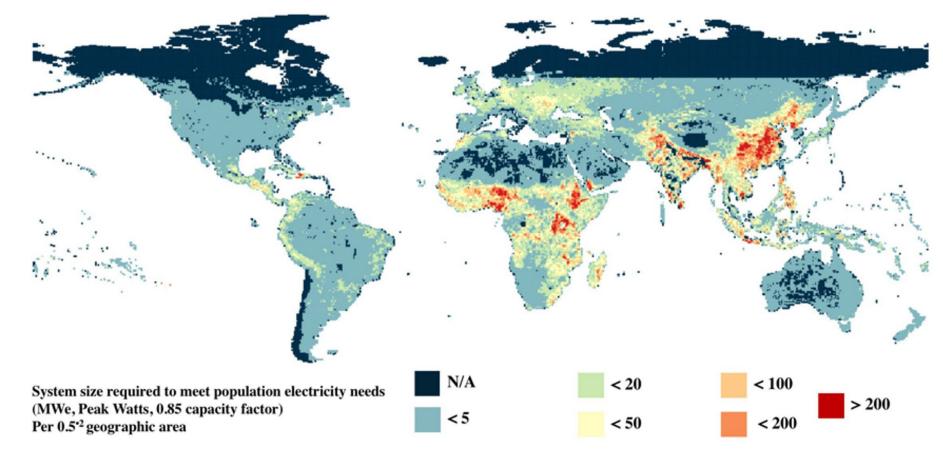
A world of data at your fingertips


Population Living in Electricity Poverty

Schweikert, AE., Osborne, AG. Stoll, B., Deinert, MR," 2022. In Review

GENUX International Forum Expertise | Collaboration | Excellence

Population Living in Electricity Poverty


Schweikert, AE., Osborne, AG. Stoll, B., Deinert, MR," 2022. In Review

GENUX International Forum

Meeting (Defining) Electricity Demand

Annual Demand at 3MWhe per capita

18

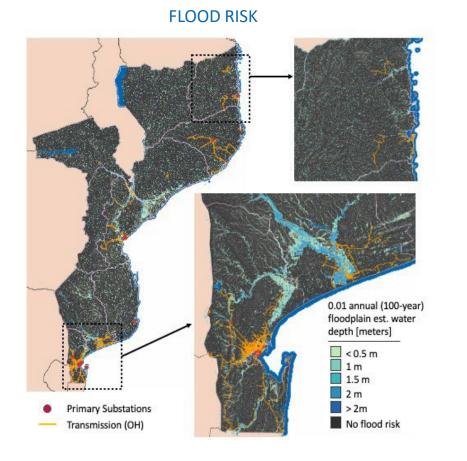
Schweikert, A.E., Osborne, A.G. Stoll, B., Deinert, M.R., 2022. In Review GENUE International Forum Expertise | Collaboration | Excellence

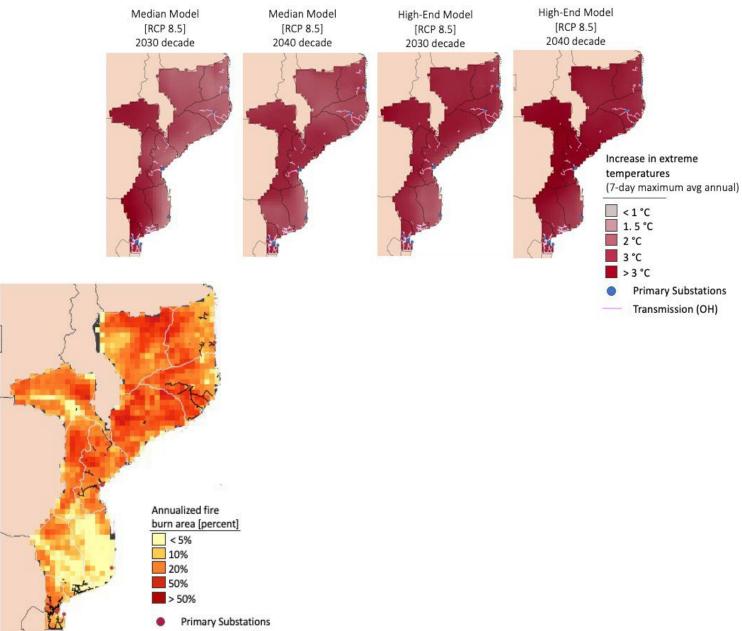
IIII 🔹 💌 🔚 🔚 🚟 💷

The Potential – Annual Market Size

	Market Size (GWh)	Market Size - USD (at: 10.84 cents/kWhe*)
ESMAP (T5) 3 MWhe	5.25 million GWh	\$ 569 billion
US Access 10.8 MWhe	18.9 million GWh	\$2.05 trillion

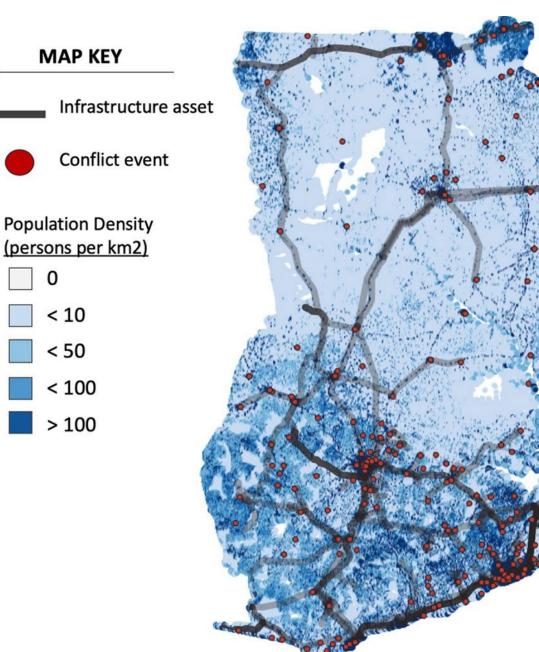
1.75 billion persons *currently living in* Electricity Poverty


* Lowest Cost US Region, West South Central, Residential US July 2018


ESMAP – "Energy Sector Management Assistance Program"

GEN IV International Forum

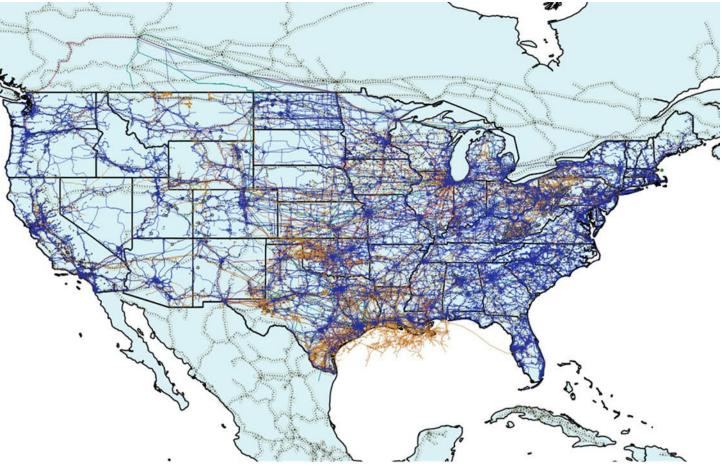
Hazards



Often Neglected Complications

- Multi-hazard events the intersection of multiple hazards simultaneously, or in quick succession, complicates response and can extend damages or damage repairs
- 2. Strains on institutional capacity resilience
- 3. Overlap of conflicts and infrastructure shocks Conflict can make it impossible to get to areas where shocks have damaged infrastructure

Conflict


0

Where Shocks Happen Matters

- Railroad lines
- Transmission grid
- Power plant >1 MW
- Petroleum product pipeline
- Natural gas market hub
 - Natural gas pipeline
- LNG Import/Export Terminal
- HGL pipeline
- Crude Oil Rail Terminal
- Crude Oil Pipeline
- Coal Mine

Where Shocks Happen Matters – Puerto Rico

Island states present unique challenges:

- Diversity of providers, operations matter
- Supply chain of fuel is critical (port closures dependent on oil imports)

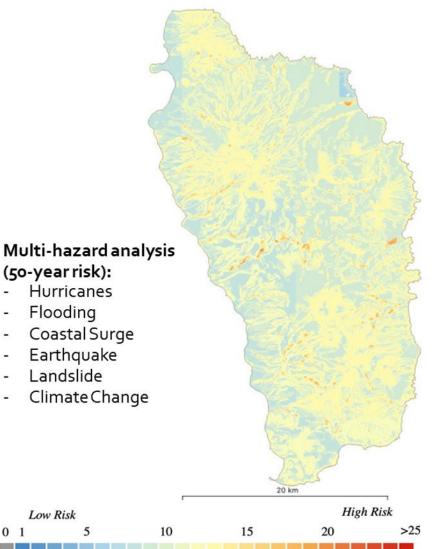
Graphic modified from: https://www.elnuevodia.com/noticias/locales/nota/todoloquenecesitassabersobreelapagon-2243737/?TB_iframe=true

GEN IV International Forum

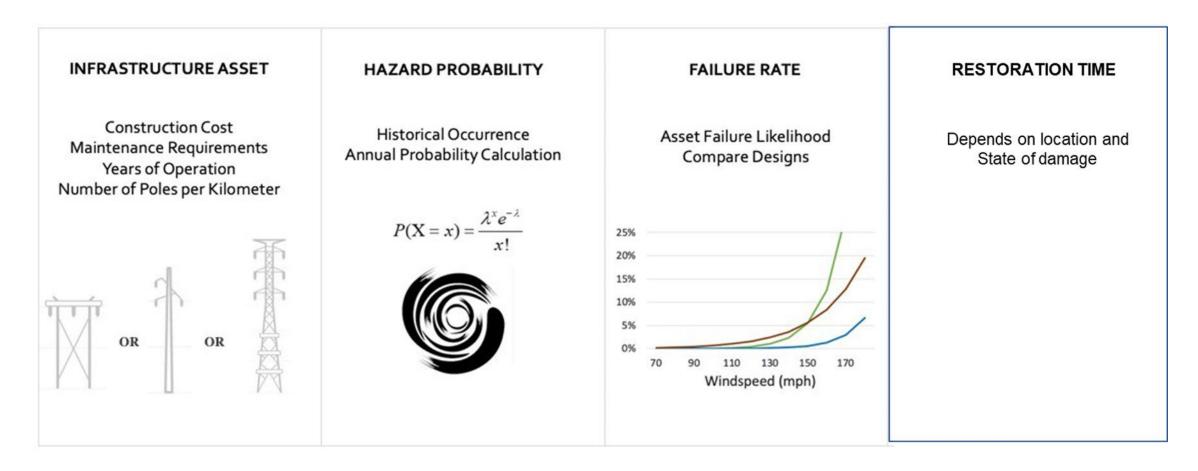
Recovery Depends on Infrastructure Networks

- 1. Port closures for fuel delivery
- 2. Road damages for fuel delivery / repair operations
- 3. Backup generators requiring diesel stored on site

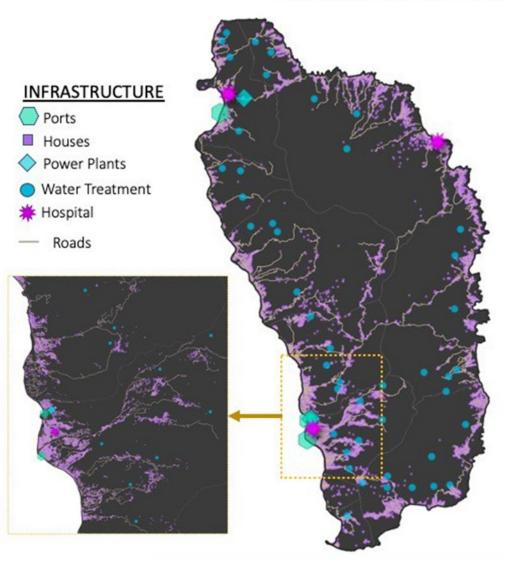
Project looking at Caribbean region (SIDS) resilience to natural hazards and climate change


"What infrastructure should we most prioritize?"

- Invest in roads?
- Invest in hospitals? Invest in flooding reductions (dams)?


Schweikert, A. E., G. F. L'Her, and M. R. Deinert. "Simple method for identifying interdependencies in service delivery in critical infrastructure networks." *Applied Network* Science 6, no. 1 (2021): 1-13

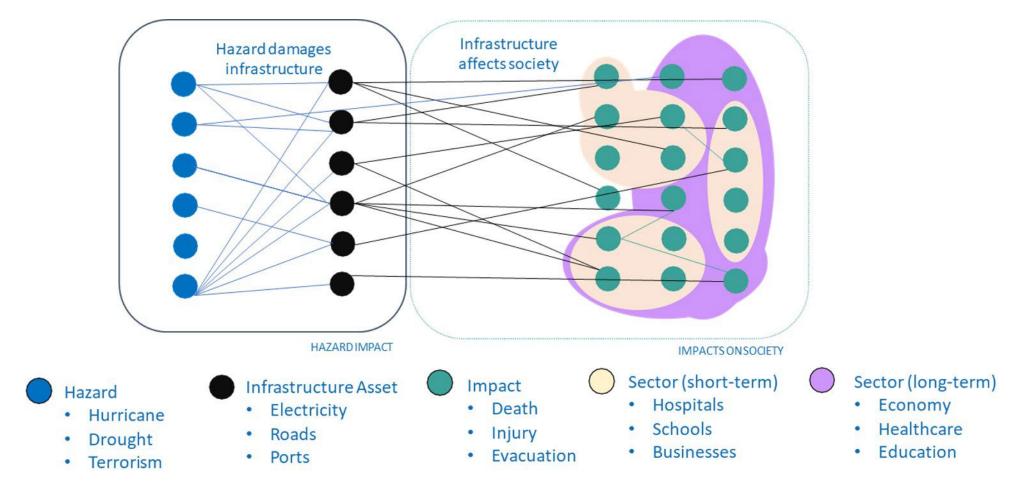
0


Commonwealth of Dominica

Project looking at Caribbean region (SIDS) resilience to natural hazards and climate change

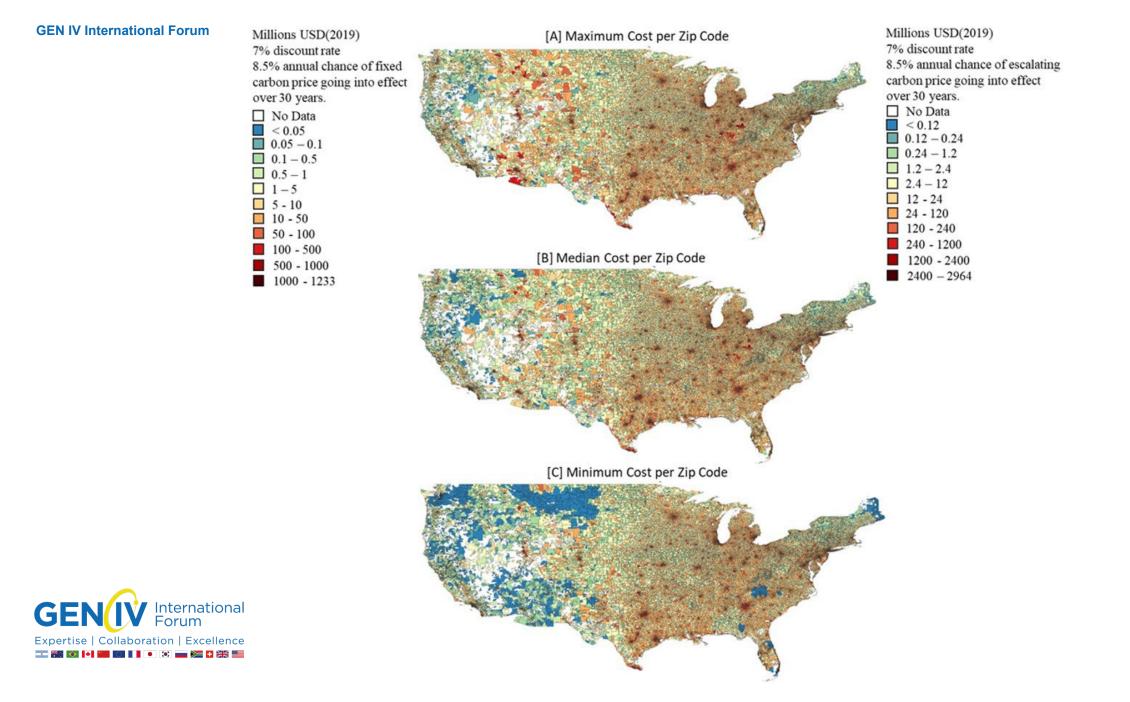
"What infrastructure should we most prioritize?"
Invest in roads?
Invest in hospitals?
Invest in flooding reductions (dams)?

Schweikert, A. E., G. F. L'Her, and M. R. Deinert. "Simple method for identifying interdependencies in service delivery in critical infrastructure networks." *Applied Network Science* 6, no. 1 (2021): 1-13



Road segment criticality shown in quintiles. More critical segments indicate that the loss of this segment increases overall travel cost for the origin-destination pair in each perspective.

Recovery Depends on Infrastructure Networks in General



Kerber, SW, AQ Gilbert, MR Deinert, MD Bazilian: Understanding the nexus of energy, environment and conflict: An overview. *Renewable and Sustainable Energy Reviews*, 151, 111473, 2021

Sustainability has Value

- ESG (Environmental Social and Governance) has become a significant factor in many industries
- Climate change is a major factor in ESG
- "Can you make money by integrating ESG into a business? No, but you can lose money by not doing it"

Sustainability has Value

- 61% of home buyers are 'very' or 'somewhat' interested in sustainability¹
- 70% residential [74% commercial] Agents reported that promoting energy efficiency is 'somewhat' or 'very' valuable¹
- 1.9 million US homes are estimated to be underwater due to climate change by 2100²
- Hurricane Florence, which made landfall in North Carolina in September 2018, affected properties owned by 94 U.S. REITs³

^{1) 2021,} https://www.nar.realtor/research-and-statistics/research-reports/realtors%C2%AE-and-sustainability

²⁾ Bretz, Lauren. Climate Change and Homes: Who Would Lose the Most to a Rising Tide? Oct. 18, 2017 https://www.zillow.com/research/ climate-changeunderwater-homes-2-16928/

³⁾ Kok, N., and A. Ayoub. Storm Watch! REITS and CMBS Deals Most Exposed to Hurricane Florence. Medium. 12 September 2018. https:// medium.com/geophy-hq/storm-watch-these-reits-and-cmbs-deals-are-most-exposed-to-hurricane-florence-aae2292d8e36

Real Estate Sustainability

- Risk Dashboard
 - Address-Based Climate and Hazard Analytics (HouseHazard.org)
- "Solar Score" & "Sustainability Score"
 - Building-specific renewable energy potential

Location Based Profile

DASHBOARD

Discover your risks at a glance

- Current risks
- Climate change impacts
- Insurance considerations

House Hazards

Know the risks. Be Ready.

۹ Try another address...

966 10th St, Boulder, CO 80302, USA

Current Hazard Risks

	Hailstorms	Very High
false	Flooding	Low
Ì	Hurricanes	Very Low
<u>A</u> AA	Wildfires	Click for Info
গত,- জি ন ন	Drought	Click for Info
	Heat Index	Very Low
	Earthquakes	Very Low
No.	Landslides	Low
	Air Quality	Low
	Internet	Very Low

Climate Change Impact

Change to Hailstorm Frequency	High
Change to Flooding	Very Low
I Change to Hurricanes	Very Low
Change to Wildfire Frequency	Moderate
Change to Drought Index	Moderate
Change to Heat Index	High

Location Based Profile

CLIMATE and COOLING RISK

For the 2030 Decade:

"Low" Risk: +5 to 15% increase

"Moderate" Risk: +15 to 30% increase

"High" Risk: > 30% increase

House Hazards

Know the risks. Be Ready.

۹ Try another address...

966 10th St, Boulder, CO 80302, USA

Current Hazard Risks

	Hailstorms	Very High
false.	Flooding	Low
Ì	Hurricanes	Very Low
<u> </u>	Wildfires	Click for Info
ত্র্ত হার্ট ক্রিব ন	Drought	Click for Info
ŔŢ.	Heat Index	Very Low
	Earthquakes	Very Low
	Landslides	Low
	Air Quality	Low
	Internet	Very Low
	Heat Index Earthquakes Landslides Air Quality	Very Lo Very Lo Lo

Climate Change Impact

Change to Hailstorm Frequency	High
Change to Flooding	Very Low
Schange to Hurricanes	Very Low
Change to Wildfire Frequency	Moderate
Change to Drought Index	Moderate
Change to Heat Index	High

Location Based Profile

FLOOD RISK

"Low" Risk: Minimal flood hazard zone (no quantified risk for 100 or 500-year flood)

"Moderate" Risk: within 500-year zone

"High" Risk: within 100-year zone

House Hazards

Know the risks. Be Ready.

966 10th St, Boulder, CO 80302, USA

Q Try another address...

Current Hazard Risks

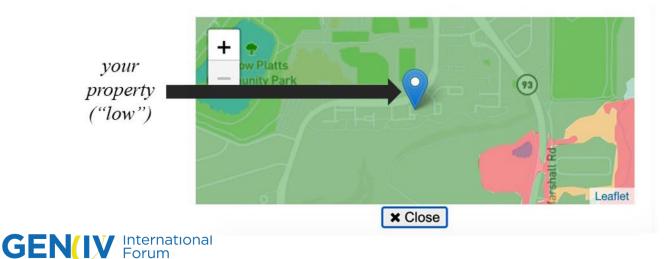
	Hailstorms	Very High
false	Flooding	Low
Ì	Hurricanes	Very Low
<u> AAA</u>	Wildfires	Click for Info
ত্র্র হার্ট জির ন	Drought	Click for Info
Ϋ́ς.	Heat Index	Very Low
	Earthquakes	Very Low
	Landslides	Low
	Air Quality	Low
	Internet	Very Low

Climate Change Impact

Change to Hailstorm Frequency	High
Change to Flooding	Very Low
Schange to Hurricanes	Very Low
Change to Wildfire Frequency	Moderate
Change to Drought Index	Moderate
Change to Heat Index	High

Expertise | Collaboration | Excellence

IIII • 🔅 🚃 🔀 🕂 💥 💻


Location Based Profile

FLOOD

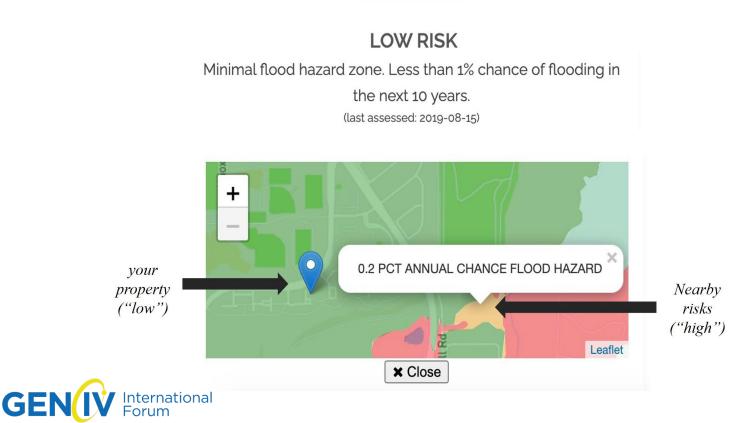
LOW RISK

Minimal flood hazard zone. Less than 1% chance of flooding in the next 10 years. (last assessed: 2019-08-15)

NEXT STEPS

Contextualize, compare, prepare

- Your property & what's nearby
- Links for more information


Expertise | Collaboration | Excellence

🛯 🛯 🗶 💌 📰 🔚 🚟 💻

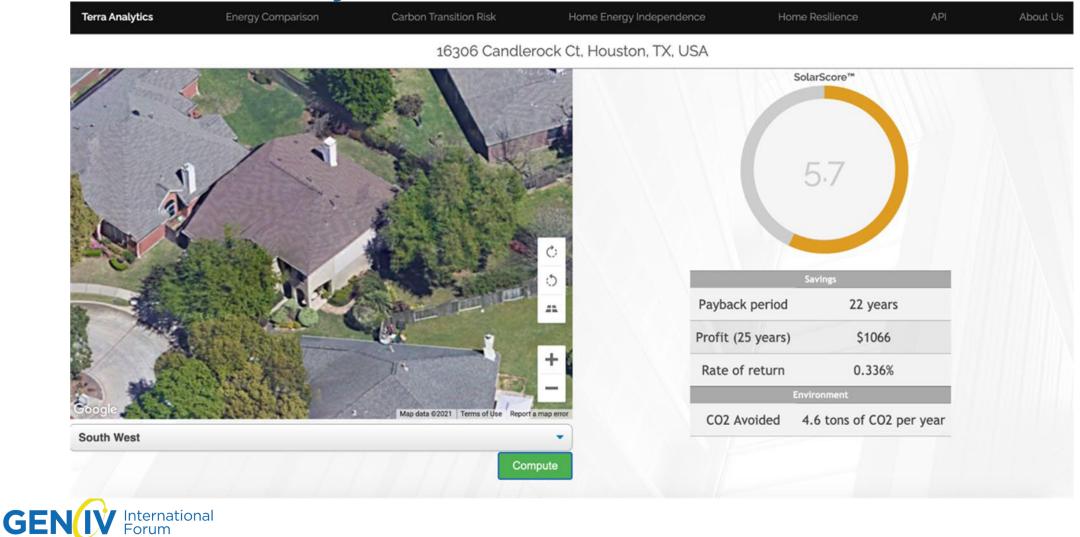
Location Based Profile

FLOOD

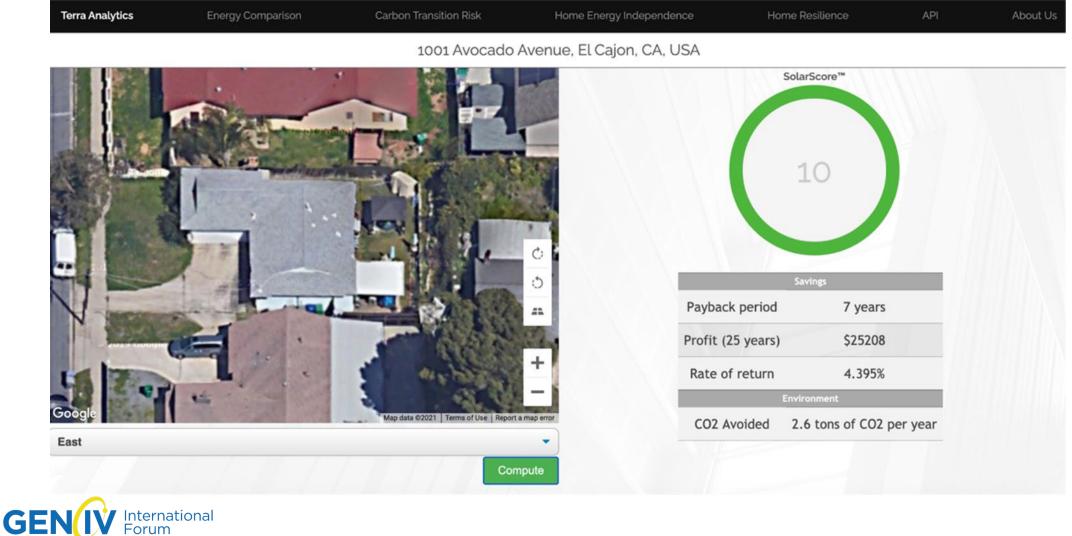
NEXT STEPS

Contextualize, compare, prepare

- Your property & what's nearby
- Links for more information


Solar Sustainability Score

- Solar Score
 - Address-based (every building in Google Maps)
 - Uses 10 years of historical (hourly) solar data, along with rooftop pitch and panel angle to sun
 - Identifies: Payback period (years), profit over lifetime (\$) and rate of return on your investment (% of cost), avoided CO2 emissions based on local energy provider (tons)
- Sustainability Score
 - Address-based (every building in Google Maps)
 - Provides relative ranking of the 'sustainability' of the property, including local electricity providers' carbon footprint


Expertise | Collaboration | Excellence

Solar Sustainability Score

Expertise | Collaboration | Excellence

Solar Sustainability Score

42

Acknowledgments

Dr. Andrew Osborne Dr. Guillaume L'Her Dr. Robert Flanagan Dr. Amy Schweikert

Mr. Bhupinder Singh, DOE, Office of Nuclear Energy Dr. Temi Taiwo, Argonne, National Laboratory Dr. Bo Feng, Argonne National Laboratory

Upcoming Webinars

Date	Title	Presenter
14 December 2022	The Mechanisms Engineering Test Loop (METL) facility at Argonne National Lab	Dr. Derek Kultgen, Argonne National Laboratory, USA
25 January 2023	Molten Salt Reactors Taxonomy and Fuel Cycle Performance	Dr. Jiri Krepel, Paul Scherrer Institute, Switzerland
22 February 2023	Safe Final Disposal of Spent Nuclear Fuel in Finland	Mr. Mika Pohjon and Ms. Mari Lahti, Posiva Solutions Oy, Finland

ATTENTION JUNIOR RESEARCHERS! GET READY TO...

PITCH YOUR GEN IV RESEARCH

https://www.gen-4.org/gif/jcms/c_173183/pitch-your-generation-iv-research-competition

2023 Pitch Your GEN IV Research

- Are you a current PhD student or did you complete your PhD after January 1, 2021?
- Was your PhD research related to Generation IV Advanced Nuclear Energy Systems?
- Can you explain your research in four minutes?

If you answered YES to those questions, you may be interested in the **2023 Pitch Your GEN IV Research competition.**

For research related to GEN IV Advanced Nuclear Energy Systems enter by submitting your one-page executive summary by January 15, 2023.

For more details, visit: www.gen-4.org/gif/pitch-your-generation-iv-research

WATCH THE 2021 PITCH VIDEOS

tinyurl.com/wwauk74

tinyurl.com/hdrrvfek

https://www.gen-4.org/gif/jcms/c_173183/pitch-your-generation-iv-research-competition