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I. Introduction 
1. Motivation

 Muon tomography has been emerged as one of promising non-invasive monitoring and imaging 
techniques for dense and large objects.

 Cosmic ray muons have benefits over traditional induced radiation probes for non-destructive 
imaging due to their high-energy (109~12 eV vs 103~6 eV)

 For example,
– Spent nuclear fuel cask imaging
– Nuclear reactor (e.g., monitoring damaged reactor core in Fukushima nuclear site)
– Nuclear materials inspection in a cargo container
– Archeology (e.g., finding a hidden chamber in the Great Pyramid of Giza)
– Geotomography (e.g., investigating magma chamber underneath volcano to predict upcoming 

eruption)

8
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I.    INTRODUCTION
2. Problem Statement

 Benefits of measuring muon momentum in 
muon applications (monitoring and imaging) 
has been explored.

 Therefore, often a mean cosmic ray muon 
momentum value (3–4 GeV/c) represents the 
entire spectrum.

 Because none of  existing muon spectrometers 
can be deployed in the field.

9

Fig. 1.1 Vertical differential cosmic momentum spectrum at 
sea level with zenith angle 0°

Grieder, P. K. F. (2001). Cosmic Rays at Earth. In Elsevier Science. Elsevier Science.
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Fig. 1.2 Reconstructed Gaussian distributions 
for steel, lead, and uranium when muon 
momentum is 3 GeV/c (top) and 1, 3, and 10 
GeV/c (bottom).

𝜎𝜎𝜃𝜃 =
13.6 𝑀𝑀𝑀𝑀𝑀𝑀
𝛽𝛽𝛽𝛽𝛽𝛽

𝑋𝑋
𝑋𝑋0

1 + 0.088 log10
𝑋𝑋
𝑋𝑋0

• 𝜎𝜎𝜃𝜃: standard deviation of scattering angle distribution

• 𝛽𝛽𝛽𝛽𝛽𝛽: product of cosmic muon velocity and momentum

• 𝑋𝑋/𝑋𝑋0: Ratio of scattering length to radiation length

Importance of measuring muon momentum
𝜎𝜎𝜃𝜃
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Three existing techniques to measure muon momentum
Magnets Time of Flight Cherenkov Ring Imager

 High resolution
 Large and bulky magnets 

are required
 Impact the muon trajectory

 Low resolution
 Long distance is required

 High resolution
 Liquid radiator is required
 Array of optical sensors are required
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I.    INTRODUCTION
3. Research Objective

1. Development of fieldable muon spectrometer
* Requirements in design
 Easily coupled with existing muon tomography system
 Compact, portable, and light-weight
 Compatible momentum measurement resolution
 High accuracy
 Preserve incoming and outgoing muon trajectories

2. Development of momentum-integrated imaging algorithm without increasing computational 
costs

3. Improvement in imaging resolution and reducing monitoring times in various muon 
applications



GEN IV International Forum

A Gas Cherenkov Muon Spectrometer for Nuclear Security 
Applications

TABLE OF CONTENTS

13

I. INTRODUCTION
1. Motivation
2. Problem Statement
3. Research Objective

II. MUON SPECTROMETER USING GAS CHERENKOV RADIATORS
1. Operational Principle
2. Optical Photon Emission
3. Results

III. MOMENTUM INTEGRATED IMAGING ALGORITHM

IV. MOMENTUM INTEGRATED MUON TOMOGRAPHY
1. Implementation of Cherenkov muon spectrometer in SNF monitoring
2. Results

V. SUMMARY AND CONCLUSION



II. MUON SPECTROMETER USING GAS CHERENKOV RADIATORS
1. Operational Principle

14

𝛽𝛽𝜇𝜇𝑛𝑛 > 1

𝛽𝛽𝑡𝑡𝑡𝛽𝛽 =
𝑚𝑚𝜇𝜇𝛽𝛽2

𝑛𝑛2 − 1

𝑛𝑛 ≈ 1 +
3𝐴𝐴𝑚𝑚𝛽𝛽
𝑅𝑅𝑅𝑅

𝛽𝛽𝑡𝑡𝑡𝛽𝛽 = 𝑚𝑚𝜇𝜇𝛽𝛽2
𝑅𝑅

3𝐴𝐴𝑚𝑚
𝑅𝑅
𝛽𝛽

• Cherenkov Effect

• Lorentz-Lorenz Equation

Criterion for Cherenkov radiation

Cherenkov threshold momentum, 
pth

Refractive index (n) of gas as a 
function of p and T

Threshold momentum, pth, gas as a 
function of p and T Fig. 2.1 Operational principle of Cherenkov muon 

spectrometer
J. Bae, S. Chatzidakis, Fieldable muon spectrometer using multi-layer pressurized gas Cherenkov radiators and its applications, Scientific Reports 12:2559 (2022)
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Fig. 2.2 Overview of Cherenkov muon spectrometer using 
one SiO2 and five pressurized CO2 radiators. 

Prototype Design

J. Bae, S. Chatzidakis, Fieldable muon spectrometer using multi-layer pressurized gas Cherenkov radiators and its applications, Scientific Reports 12:2559 (2022)

Fig. 2.3 Visualized Gean4 simulation when p𝜇𝜇= 3.1 GeV/c
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16Fig. 2.4 Three optical photon emission 
mechanisms 

J. Bae, S. Chatzidakis, Fieldable muon spectrometer using multi-layer pressurized gas Cherenkov radiators and its applications, Scientific Reports 12:2559 (2022)

1. Cherenkov radiation

• dNch/dx: Light intensity of Cherenkov radiation in a unit length
• 𝛼𝛼: Fine structure constant
• 𝑛𝑛: Refractive index
• 𝜆𝜆1,2: Lower and upper limit of Cherenkov light wavelength

𝑑𝑑𝑁𝑁𝑐𝑐𝑡
𝑑𝑑𝑑𝑑

= 2𝜋𝜋𝛼𝛼�
𝜆𝜆1

𝜆𝜆2
1 −

1
𝑛𝑛2 𝜆𝜆 𝛽𝛽2

𝑑𝑑𝜆𝜆
𝜆𝜆2
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J. Bae, S. Chatzidakis, Fieldable muon spectrometer using multi-layer pressurized gas Cherenkov radiators and its applications, Scientific Reports 12:2559 (2022)

2. Scintillation

• dNsc/dx: Light intensity of scintillation in a unit length
• 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑: Energy loss of muon in a unit length
• 𝑘𝑘𝐵𝐵: Birks’ constant
• S: Scintillation efficiency

𝑑𝑑𝑁𝑁𝑠𝑠𝑐𝑐
𝑑𝑑𝑑𝑑

= 𝑆𝑆
𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑

1 + 𝑘𝑘𝐵𝐵(𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑)
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J. Bae, S. Chatzidakis, Fieldable muon spectrometer using multi-layer pressurized gas Cherenkov radiators and its applications, Scientific Reports 12:2559 (2022)

3. Transition radiation

• Ntr: Light intensity of transition radiation.
• 𝛼𝛼: Fine structure constant
• 𝛾𝛾: Lorentz factor (= 1/ 1 − 𝛽𝛽2)
• 𝛽𝛽 (≡ 𝑣𝑣/𝛽𝛽): Particle velocity in terms of c (speed of light)

𝑁𝑁𝑡𝑡𝑡𝑡 �per boundary
=
𝛼𝛼
𝜋𝜋

ln 𝛾𝛾 − 1 2 +
𝜋𝜋2

12
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mechanisms 

J. Bae, S. Chatzidakis, Fieldable muon spectrometer using multi-layer pressurized gas Cherenkov radiators and its applications, Scientific Reports 12:2559 (2022)

4. Cherenkov radiation by secondary electrons, (1) 𝜇𝜇 decay
(2) mu2e conversion

• 𝑚𝑚𝑒𝑒: Rest mass of electron (~0.511 MeV/c)
• 𝑚𝑚𝜇𝜇: Rest mass of muon (~105.66 MeV/c)
• 𝛽𝛽𝑡𝑡𝑡,𝜇𝜇: Cherenkov threshold momentum for muons
• 𝛽𝛽𝑡𝑡𝑡,𝑒𝑒: Cherenkov threshold momentum for electrons

𝛽𝛽𝑡𝑡𝑡,𝑒𝑒 =
𝑚𝑚𝑒𝑒
𝑚𝑚𝜇𝜇

𝛽𝛽𝑡𝑡𝑡,𝜇𝜇~
1

207 𝛽𝛽𝑡𝑡𝑡,𝜇𝜇

𝜇𝜇− → 𝑀𝑀−�̅�𝜈𝑒𝑒𝜈𝜈𝜇𝜇

𝜇𝜇+ → 𝑀𝑀+𝜈𝜈𝑒𝑒�̅�𝜈𝜇𝜇
𝜇𝜇𝑁𝑁𝐴𝐴𝐴𝐴 → 𝑀𝑀𝑁𝑁𝐴𝐴𝐴𝐴
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Fig. 2.5 Expected light yield by three optical 
photon emission mechanisms 

J. Bae, S. Chatzidakis, A Development of Compact Muon Spectrometer Using Multiple Pressurized Gas Cherenkov Radiators, Results in Physics 39 (2022)

1. Cherenkov radiation

2. Scintillation

3. Transition radiation

4. Cherenkov radiation 
due to secondary e-
(1) 𝜇𝜇 decay
(2) mu2e conversion

𝑑𝑑𝑁𝑁𝑐𝑐𝑡
𝑑𝑑𝑑𝑑

= 2𝜋𝜋𝛼𝛼�
𝜆𝜆1

𝜆𝜆2
1 −

1
𝑛𝑛2 𝜆𝜆 𝛽𝛽2

𝑑𝑑𝜆𝜆
𝜆𝜆2

𝑑𝑑𝑁𝑁𝑠𝑠𝑐𝑐
𝑑𝑑𝑑𝑑

= 𝑆𝑆
𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑

1 + 𝑘𝑘𝐵𝐵(𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑)

𝑁𝑁𝑡𝑡𝑡𝑡 �per boundary
=
𝛼𝛼
𝜋𝜋 ln 𝛾𝛾 − 1 2 +

𝜋𝜋2
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𝜇𝜇− → 𝑀𝑀−�̅�𝜈𝑒𝑒𝜈𝜈𝜇𝜇

𝜇𝜇+ → 𝑀𝑀+𝜈𝜈𝑒𝑒�̅�𝜈𝜇𝜇
𝜇𝜇𝑁𝑁𝐴𝐴𝐴𝐴 → 𝑀𝑀𝑁𝑁𝐴𝐴𝐴𝐴
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𝒑𝒑𝝁𝝁 = 𝟏𝟏.𝟏𝟏 𝑮𝑮𝑮𝑮𝑮𝑮/𝒄𝒄 𝒑𝒑𝝁𝝁 = 𝟑𝟑.𝟏𝟏 𝑮𝑮𝑮𝑮𝑮𝑮/𝒄𝒄

Fig. 2.6 Expected number of photon by Cherenkov radiation in each radiator when 𝛽𝛽𝜇𝜇 = 1.1 (left)  and 3.1 GeV/c (right).

J. Bae, S. Chatzidakis, A Development of Compact Muon Spectrometer Using Multiple Pressurized Gas Cherenkov Radiators, Results in Physics 39 (2022)
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𝒑𝒑𝝁𝝁 = 𝟏𝟏.𝟏𝟏 𝑮𝑮𝑮𝑮𝑮𝑮/𝒄𝒄 𝒑𝒑𝝁𝝁 = 𝟑𝟑.𝟏𝟏 𝑮𝑮𝑮𝑮𝑮𝑮/𝒄𝒄

Fig. 2.7 Expected number of photon by Cherenkov radiation and scintillation in each radiator when 𝛽𝛽𝜇𝜇 = 1.1 (left)  and 3.1
GeV/c (right).

J. Bae, S. Chatzidakis, A Development of Compact Muon Spectrometer Using Multiple Pressurized Gas Cherenkov Radiators, Results in Physics 39 (2022)
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Fig. 2.8 Total Number of photons (Cherenkov radiation + Scintillation) 

as a function of 𝑑𝑑𝜇𝜇 in each radiator
Radiator ID

J. Bae, S. Chatzidakis, Fieldable muon spectrometer using multi-layer pressurized gas Cherenkov radiators and its applications, Scientific Reports 12:2559 (2022)

• Total number of optical photons 

provides clear signal (rapid increase) 

of muon momentum.

• The results demonstrate the feasibility 

of our Cherenkov muon spectrometer. 



II. MUON SPECTROMETER USING GAS CHERENKOV RADIATORS
3. Results

24
Fig. 2.9 Classification as a function of muon momentum with 

various discriminator levels

J. Bae, S. Chatzidakis, Fieldable muon spectrometer using multi-layer pressurized gas Cherenkov radiators and its applications, Scientific Reports 12:2559 (2022)

• Discriminator uniformly deducts 

photon signals to eliminate noise.

• By using a combination of various 

levels of discriminators, the mean CR 

is ~87%

~ 87% CR =
True Positive Classification

Positive Classification
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Fig. 2.10 Reconstructed cosmic ray muon spectrum using six 

radiators.

J. Bae, S. Chatzidakis, Fieldable muon spectrometer using multi-layer pressurized gas Cherenkov radiators and its applications, Scientific Reports 12:2559 (2022)

• Cosmic ray muon spectrum was 

successfully reconstructed using 6 

radiators.

• All muons with 𝛽𝛽𝜇𝜇 > 5 GeV/c are 

recorded and accumulated in the 6th

bin.

• This problem can be easily resolved 

by increasing the number of radiators.
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Fig. 2.11 Reconstructed cosmic ray muon spectrum using extended number of radiators, 
10 (left) and 100 (right)  

J. Bae, S. Chatzidakis, Fieldable muon spectrometer using multi-layer pressurized gas Cherenkov radiators and its applications, Scientific Reports 12:2559 (2022)

• N = 10
• 𝜎𝜎𝑝𝑝 = ±0.5 𝐺𝐺𝑀𝑀𝑀𝑀/𝛽𝛽
• 𝜎𝜎𝑝𝑝/𝛽𝛽|𝑚𝑚𝑒𝑒𝑚𝑚𝑚𝑚 = 21.33 %

• N = 100
• 𝜎𝜎𝑝𝑝 = ±0.05 𝐺𝐺𝑀𝑀𝑀𝑀/𝛽𝛽
• 𝜎𝜎𝑝𝑝/𝛽𝛽|𝑚𝑚𝑒𝑒𝑚𝑚𝑚𝑚 = 3.35 %
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Fig. 3.1 Simplified pseudocodes for PoCA and 

mPoCA algorithms for muon scattering tomography

PoCA mPoCA

1. Voxelated the volume of interest.
2. Find a single scattering point using PoCA 

algorithm.
→ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴 = [𝑃𝑃𝑥𝑥,𝑃𝑃𝑦𝑦 ,𝑃𝑃𝑧𝑧]

3a. Compute a scattering 
angle, 𝜃𝜃.
4a. Record 𝜃𝜃 with 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴.
→ 𝑀𝑀𝑥𝑥𝑦𝑦𝑧𝑧 = [𝑃𝑃𝑥𝑥,𝑃𝑃𝑦𝑦 ,𝑃𝑃𝑧𝑧, 𝜃𝜃]
5a. Plot 𝜃𝜃 at 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴.

3b. Compute M-value.
4b. Record 𝑀𝑀 with 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴.
→𝑀𝑀𝑥𝑥𝑦𝑦𝑧𝑧 = 𝑃𝑃𝑥𝑥,𝑃𝑃𝑦𝑦 ,𝑃𝑃𝑧𝑧,𝑀𝑀
5b. Plot 𝑀𝑀 at 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴.

Fig. 3.2 Point of Closest Approach (PoCA) and voxelated volume 
of interest 

J. Bae, S. Chatzidakis, “Momentum Integrated PoCA Algorithm for Muon Scattering Tomography”, Journal of Imaging (under review) 
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Fig. 3.1 Simplified pseudocodes for PoCA and 

mPoCA algorithms for muon scattering tomography

PoCA mPoCA

1. Voxelate the volume of interest.
2. Find a single scattering point using PoCA 

algorithm.
→ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴 = [𝑃𝑃𝑥𝑥,𝑃𝑃𝑦𝑦 ,𝑃𝑃𝑧𝑧]

3a. Compute a scattering 
angle, 𝜃𝜃.
4a. Record 𝜃𝜃 with 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴.
→ 𝑀𝑀𝑥𝑥𝑦𝑦𝑧𝑧 = [𝑃𝑃𝑥𝑥,𝑃𝑃𝑦𝑦 ,𝑃𝑃𝑧𝑧, 𝜃𝜃]
5a. Plot 𝜃𝜃 at 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴.

3b. Compute M-value.
4b. Record 𝑀𝑀 with 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴.
→𝑀𝑀𝑥𝑥𝑦𝑦𝑧𝑧 = 𝑃𝑃𝑥𝑥,𝑃𝑃𝑦𝑦 ,𝑃𝑃𝑧𝑧,𝑀𝑀
5b. Plot 𝑀𝑀 at 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴.

Fig. 3.3 Reconstruction of incoming and outgoing muon 
trajectories. 
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Borozdin, K., Hogan, G., Morris, C. et al. Radiographic imaging with cosmic-ray muons. Nature 422, 277 (2003).

Fig. 3.1 Simplified pseudocodes for PoCA and 
mPoCA algorithms for muon scattering tomography

PoCA mPoCA

1. Voxelize the volume of interest.
2. Find a single scattering point using PoCA 

algorithm.
→ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴 = [𝑃𝑃𝑥𝑥,𝑃𝑃𝑦𝑦 ,𝑃𝑃𝑧𝑧]

3a. Compute a scattering 
angle, 𝜃𝜃.
4a. Record 𝜃𝜃 with 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴.
→ 𝑀𝑀𝑥𝑥𝑦𝑦𝑧𝑧 = [𝑃𝑃𝑥𝑥,𝑃𝑃𝑦𝑦 ,𝑃𝑃𝑧𝑧, 𝜃𝜃]
5a. Plot 𝜃𝜃 at 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴.

3b. Compute M-value.
4b. Record 𝑀𝑀 with 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴.
→𝑀𝑀𝑥𝑥𝑦𝑦𝑧𝑧 = 𝑃𝑃𝑥𝑥,𝑃𝑃𝑦𝑦 ,𝑃𝑃𝑧𝑧,𝑀𝑀
5b. Plot 𝑀𝑀 at 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴.

Fig. 3.4 Benchmarking experiment and simulation results by 
K. N. Borozdin et al.  
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Fig. 3.4 Benchmarking experiment and simulation results by 
K. N. Borozdin et al.  

J. Bae, S. Chatzidakis, “Momentum Integrated PoCA Algorithm for Muon Scattering Tomography”, IEEE Transactions on Nuclear Science (under review) 

Fig. 3.1 Simplified pseudocodes for PoCA and 
mPoCA algorithms for muon scattering tomography

PoCA mPoCA

1. Voxelize the volume of interest.
2. Find a single scattering point using PoCA 

algorithm.
→ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴 = [𝑃𝑃𝑥𝑥,𝑃𝑃𝑦𝑦 ,𝑃𝑃𝑧𝑧]

3a. Compute a scattering 
angle, 𝜃𝜃.
4a. Record 𝜃𝜃 with 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴.
→ 𝑀𝑀𝑥𝑥𝑦𝑦𝑧𝑧 = [𝑃𝑃𝑥𝑥,𝑃𝑃𝑦𝑦 ,𝑃𝑃𝑧𝑧, 𝜃𝜃]
5a. Plot 𝜃𝜃 at 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴.

3b. Compute M-value.
4b. Record 𝑀𝑀 with 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴.
→𝑀𝑀𝑥𝑥𝑦𝑦𝑧𝑧 = 𝑃𝑃𝑥𝑥,𝑃𝑃𝑦𝑦 ,𝑃𝑃𝑧𝑧,𝑀𝑀
5b. Plot 𝑀𝑀 at 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴.
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log10 𝑚𝑚𝑚𝑚𝑑𝑑 𝜃𝜃 = 𝑘𝑘log10 𝛽𝛽 + 𝑀𝑀

𝑀𝑀 = log10 𝜃𝜃 [rad] × ]𝛽𝛽 [Ge ⁄V c 2.24

J. Bae, S. Chatzidakis, “Generalized mPoCA imaging algorithm for Muon Radiography” (in preparation) 

Fig. 3.1 Simplified pseudocodes for PoCA and 
mPoCA algorithms for muon scattering tomography

PoCA mPoCA

1. Voxelize the volume of interest.
2. Find a single scattering point using PoCA 

algorithm.
→ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴 = [𝑃𝑃𝑥𝑥,𝑃𝑃𝑦𝑦 ,𝑃𝑃𝑧𝑧]

3a. Compute a scattering 
angle, 𝜃𝜃.
4a. Record 𝜃𝜃 with 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴.
→ 𝑀𝑀𝑥𝑥𝑦𝑦𝑧𝑧 = [𝑃𝑃𝑥𝑥,𝑃𝑃𝑦𝑦 ,𝑃𝑃𝑧𝑧, 𝜃𝜃]
5a. Plot 𝜃𝜃 at 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴.

3b. Compute M-value.
4b. Record 𝑀𝑀 with 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴.
→𝑀𝑀𝑥𝑥𝑦𝑦𝑧𝑧 = 𝑃𝑃𝑥𝑥,𝑃𝑃𝑦𝑦 ,𝑃𝑃𝑧𝑧,𝑀𝑀
5b. Plot 𝑀𝑀 at 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴.

Fig. 3.5 Correlation between log10 mod θ and log10p
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Fig. 3.6 Muon scattering tomography using mPoCA 

algorithm for aluminum, steel, lead, and uranium

J. Bae, S. Chatzidakis, “Momentum Integrated PoCA Algorithm for Muon Scattering Tomography”, IEEE Transactions on Nuclear Science (under review)

Fig. 3.1 Simplified pseudocodes for PoCA and 
mPoCA algorithms for muon scattering tomography

PoCA mPoCA

1. Voxelize the volume of interest.
2. Find a single scattering point using PoCA 

algorithm.
→ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴 = [𝑃𝑃𝑥𝑥,𝑃𝑃𝑦𝑦 ,𝑃𝑃𝑧𝑧]

3a. Compute a scattering 
angle, 𝜃𝜃.
4a. Record 𝜃𝜃 with 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴.
→ 𝑀𝑀𝑥𝑥𝑦𝑦𝑧𝑧 = [𝑃𝑃𝑥𝑥,𝑃𝑃𝑦𝑦 ,𝑃𝑃𝑧𝑧, 𝜃𝜃]
5a. Plot 𝜃𝜃 at 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴.

3b. Compute M-value.
4b. Record 𝑀𝑀 with 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴.
→𝑀𝑀𝑥𝑥𝑦𝑦𝑧𝑧 = 𝑃𝑃𝑥𝑥,𝑃𝑃𝑦𝑦 ,𝑃𝑃𝑧𝑧,𝑀𝑀
5b. Plot 𝑀𝑀 at 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴.
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Fig. 3.7 PoCA and mPoCA algorithms for imaging aluminum, 

steel, lead, and uranium
Po

C
A

J. Bae, S. Chatzidakis, “Momentum Integrated PoCA Algorithm for Muon Scattering Tomography”, IEEE Transactions on Nuclear Science (under review)

Fig. 3.1 Simplified pseudocodes for PoCA and 
mPoCA algorithms for muon scattering tomography

PoCA mPoCA

1. Voxelize the volume of interest.
2. Find a single scattering point using PoCA 

algorithm.
→ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴 = [𝑃𝑃𝑥𝑥,𝑃𝑃𝑦𝑦 ,𝑃𝑃𝑧𝑧]

3a. Compute a scattering 
angle, 𝜃𝜃.
4a. Record 𝜃𝜃 with 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴.
→ 𝑀𝑀𝑥𝑥𝑦𝑦𝑧𝑧 = [𝑃𝑃𝑥𝑥,𝑃𝑃𝑦𝑦 ,𝑃𝑃𝑧𝑧, 𝜃𝜃]
5a. Plot 𝜃𝜃 at 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴.

3b. Compute M-value.
4b. Record 𝑀𝑀 with 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴.
→𝑀𝑀𝑥𝑥𝑦𝑦𝑧𝑧 = 𝑃𝑃𝑥𝑥,𝑃𝑃𝑦𝑦 ,𝑃𝑃𝑧𝑧,𝑀𝑀
5b. Plot 𝑀𝑀 at 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴.
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Fig. 4.1 Overview of the momentum integrated muon tomography system using the Cherenkov muon 

spectrometer for SNF dry cask imaging (right) and the visualized Geant4 model (left).

1. Implementation of Cherenkov muon spectrometer in SNF monitoring

J. Bae, S. Chatzidakis, “Momentum Integrated Muon Tomography for Spent Nuclear Fuel Monitoring” (in preparation)
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2. Results
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2. Results

Fig. 4.3 Systematical analysis of SNF cask 
using PoCA (left) and mPoCA (right) when 

FAs are fully loaded
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2. Results
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2. Results

Fig. 4.5 Reconstructed images (left) and systematical analysis of SNF cask using PoCA and mPoCA (right) 
when one middle FA is missing
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2. Results

Fig. 4.6 Reconstructed images (left) and systematical analysis of SNF cask using PoCA and mPoCA (right) 
when a half of middle FA is missing



IV. MOMENTUM INTEGRATED MUON TOMOGRAPHY

42

2. Results

Fig. 4.6 Reconstructed images (left) and systematical analysis of SNF cask using PoCA and mPoCA (right) 
when a half of middle FA is missing
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2. Results

Fig. 4.7 Analysis of missing 
FA separation capability 
using PoCA (top) and 
mPoCA (bottom) algorithms.
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2. Results

Fig. 4.7 Analysis of missing 
FA separation capability 
using PoCA (top) and 
mPoCA (bottom) algorithms.
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2. Results

Fig. 4.7 Analysis of missing 
FA separation capability 
using PoCA (top) and 
mPoCA (bottom) algorithms.
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2. Results

Fig. 4.7 Analysis of missing 
FA separation capability 
using PoCA (top) and 
mPoCA (bottom) algorithms.
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Muon Spectrometer Using Gas Cherenkov Radiators
1. A glass (SiO2) and five pressurized gas (CO2) radiators are used in the prototype.

* Requirements in design
 Easily coupled with existing muon tomography
 Compact and portable
 Light-weight
 Compatible momentum measurement resolution
 High accuracy
 Preserve incoming and outgoing muon trajectories

2. Although increased Nrad improves 𝜎𝜎𝑝𝑝/𝛽𝛽|𝑚𝑚𝑒𝑒𝑚𝑚𝑚𝑚, it will negatively impact the SNR due to the 
decreased expected Cherenkov signals.

3. To measure energetic muon momentum (>100 GeV/c), very low gas pressure is required. 

→ Simply placed between target object and trackers
→ ~1 m3

→ < 10kg
→ 𝜎𝜎𝑝𝑝/𝛽𝛽 = 3.35%, 21.33% for Nrad = 100 and 10.
→ Mean CR ~ 87%
→ Barely interferes initial muon trajectories
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1. Momentum integrated PoCA imaging algorithm and M-values.
 A new algorithm does not increase the computational cost.
 Materials can be classified using M-values which was challenging using muon 

scattering angles.
 Imaging resolution is significantly improved.

Momentum Integrated PoCA Algorithm

1. It enables us to locate two, one, and a half missing FA(s) in a SNF dry cask. 
 Significantly improves the imaging resolution and reduced the required scanning time 

to find the missing FA by a factor of 10 or more.

Momentum Integrated Muon Tomography
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