

THERMAL-HYDRAULICS IN LIQUID METAL FAST REACTORS Dr. Antoine Gerschenfeld CEA, France 29 January 2020

Meet the Presenter

Dr. Antoine Gerschenfeld earned his PhD from Ecole Normale Supérieure, France, in 2012, and has been coordinating R&D on the thermal-hydraulics of Sodium Fast Reactors at the Commissariat a I Energie Atomique et aus Energies Alternatives (CEA)'s Thermal-Hydraulics and Fluid Mechanics Section (STMF) since 2013. In that capacity, he has led the development of a subchannel thermal-hydraulics code (TrioMC) as well as the development of a tool for coupling coarse and fine models in a single reactor-scale simulation (MATHYS). He has also been involved in a number of collaborations: bilateral exchanges with DOE, JAEA and IPPE; EURATOM projects on liquid-metal reactors; and in international GIF, NEA and IAEA working groups.

Introduction

LMFR Thermal-

- **Two** of the six Gen4 designs use liquid metal as coolant:
 - the Sodium Fast Reactor
 - \rightarrow more than 20 in 8 countries; 2 in commercial operation
 - the Lead (or LBE) Fast Reactor
 - \rightarrow projects in Russia, Belgium, Italy/Romania, USA...
- Liquid metals have many advantages...
 - little neutron moderation/absorption
 - large working temperature range at ambient pressure
 - good to excellent thermal conductivity
- but are not without challenges
 - \rightarrow especially in the field of thermal-hydraulics

Introduction

GENT International Forum

LMFR Thermal-Hydraulics

A. Gerschenfeld

Introduction

Issues

Modelling

Application

Conclusion

Thermal-hydraulics?

- the behavior (velocity, temperature, pressure) of all fluids in the reactor:
 - here \rightarrow the liquid metal (Na, Pb, LBE)
 - but also : cover gas, power conversion cycle,...
- must be evaluated both:
 - in nominal operation \rightarrow to assess the loads on structural materials \rightarrow and justify their expected lifetime : 60 years!
 - in accidental scenarios \rightarrow to assess the reactor's safety
 - \rightarrow and, if necesary, adapt its design

In this presentation

- main thermal-hydraulics issues in LMFRs
- the tools at our disposal to analyze them
- **an example application** of these tools \rightarrow to the study of natural convection

	Common features of LMRs		
	quite high working temperatures:		
2	■ SFRs: $400^{\circ} \rightarrow 550^{\circ}/650^{\circ}$ (average/local)		
	LFRs: around the same		
	$ ightarrow$ determined by material limits (steel \sim 700°)		
	no pressurization		
	minimize pipe break scenarios (like SMRs!)		
	large thermal buffer in accident scenarios		
/	at top: cover gas		
	in SFRs \rightarrow intermediate loops:		

protect primary from Na/H₂O reactions

Core / per-subassembly

A. Gerschenfeld

Introduction

Issues Overview Core Subassemblies Complete core Hot pool IHXes Cold pool Global Modelling Application

Conclusion

quite complex structures: pins, wires/grids

Issues of interest

- Cladding temperatures:
 - nominal state : T ≤ 620°C
 ⇒ avoid rupture
 - accidents : $T \le \sim 1200^{\circ}$ C
 - \Rightarrow avoid melting
 - \rightarrow if possible locally: at least pin-by-pin!

TH phenomena to model

- nominal state: mixing by wires or grids
- accidental states:
 - coolant boiling \rightarrow for SFRs
 - cladding rupture \Rightarrow gas release
 - partial or total blockage

Core / overall behavior

LMFR Thermal-Hydraulics

A. Gerschenfeld

Introduction

Issues Overview Core Subassemblies Complete core Hot pool IHXes Cold pool Global Modelling Application Conclusion

Normal operation

- flowrate repartition between S/As ⇒ optimisation
- core mechanical behavior ← hex can temperatures

Accidental scenarios

- core cooling by inter-wrapper flow in particular : internal storage
- coupled effects with:
 - core neutronics
 - \Rightarrow point kinetics or more complex
 - fuel thermal mechanics

Hot pool / Core outlet

LMFR Thermal-Hydraulics A. Gerschenfeld Introduction Issues Overview Core Hot pool **IHXes** Cold pool Global Modelling Application Conclusion

Hot pool / Core outlet

Upper Core Structure

very complex:

- S/A outlet thermocouples
- control rod guidelines
- core outlet temperature differences:
 - fuel \rightarrow 550°
 - CR tubes \rightarrow 430°

Issues

nominal state:

thermal fluctuations due to jet mixing

- incidents / accidents :
 - hot/cold shocks
 - \rightarrow thermal loads
 - reliability of core outlet temperature measurements

Hot pool

very large liquid volume!

Steady-state issues

- core outlet jet shape → in full and partial regimes
- thermal interface position → inner vessel thermals: loads, fluctuations

Accidental issues

- hot / cold shocks on vessel, components
- flow changes at low flowrate: jet shape change, stratification

Free surface

LMFR Thermal-Hydraulics

A. Gerschenfeld

Introduction

Issues Overview Core Hot pool IHXes Cold pool Global Modelling Application Conclusion

Issues in normal operation

- in steady-state:
 - wave formation \rightarrow thermal loads
 - cover gas: reactor slab heating
 - in SFRs: vortex formation
 - \rightarrow possible gas entrainment!
- during load-following:
 - flowrate variation \rightarrow level changes!

Issues in accidental scenarios

■ in LFRs : seismic sloshing → mechanical loads!

LMFR Thermal-Hydraulics | 29/01/2020 | 11 / 34

Intermediate heat exchangers (SFRs)

complex components : thousands of tubes!

Issues in normal operation

- performance : pressure drop, heat transfers
- thermal loads during startup/shutdown

Issues in accidental scenarios

- possible 3D effects : in particular, recirculations at low flowrate
- outlet jet behavior in cold pool
 - $(\Rightarrow$ stratification)
- hot / cold shocks : risk of tube rupture

even larger than the hot pool!

Nominal state issues

- stratification above IHXes
- IHX outlet jet : shape, stability...

 \Rightarrow thermal loads on inner and main vessel

Accidental issues

- jet / stratification changes during:
 - \blacksquare loss-of-flow transients \rightarrow thermal buffer
 - dissymetric events (one intermediate loop)
 - \rightarrow hot shock propagation

Issues

nominal state: performance

$$\Delta P_{pump} = f(\omega_{pump}, Q_{pump})$$

accidental states :

pressure drop at stop

overspeed, reverse flow (pump-diagrid break)

 \Rightarrow cavitation!

seizure at high temperatures

GENT International Forum

Steady-state issues

- hydraulics:
 - pressure drop
 - local flow effects close to inlet pipes
- in SFRs: possible gas accumulation

Accidental issues

- thermal dilation (strong neutronic effects!)
- **dissymetric** behavior:
 - single-pump trip, pump-diagrid pipe break → uneven flow at core inlet
 - intermediate loop pump trip
 - \rightarrow uneven temperature

Vessel cooling system

Keep main vessel at cold temperature \rightarrow very important! usually uses 10-20% of pump flowrate

Steady-state issues

- complex thermal transfers: hot pool → cold pool → vessel cooling system
- potential for gas accumulation → especially in weir-type designs

Accidental scenarios

- possible flow reversal in VCS
 - \rightarrow can contribute to thermal buffer

Some phenomena involve the complete reactor!

Gas in the primary circuit

sources:

- free-surface vortices
- entrainment at the weir
- nucleation of dissolved gas in cold regions
- cladding rupture
- transport: with the flow bubble coalescence / dissociation!
- accumulation: at top of diagrid
- possible consequences:

gas pocket in core \rightarrow power transient!

LMFR Thermal-Hydraulics | 29/01/2020 | 17 / 34

Decay Heat Removal

- can be done passively in LMRs:
 - LM/LM exchangers in hot pool
 - passive decay heat removal loop
 - LM/air exchanger in chimney

primary natural convection \rightarrow many paths:

- 1 "normal" path
- 2 recirculations between S/As
- 3 and in interwrapper region
- in passive circuits:
 - avoid freezing!
 - natural convection startup

intermediate loops may also contribute

LMFR Thermal-Hydraulics | 29/01/2020 | 18 / 34

Modelling thermal-hydraulics

LMFR Thermal-Hydraulics

A. Gerschenfeld

Introduction

Issues

Modelling Scales Codes Examples

Application

Conclusion

- (single-phase) TH can be described ab initio from the Navier-Stokes equations... ... but has highly non-linear behavior → range of scales:
 - from turbulent eddies: 10^{-6} m/ 10^{-6} s
 - to the full reactor: $10m / 10^5 s$
- \Rightarrow ab initio modelling is very difficult \rightarrow need for a cut-off scale:
 - phenomena above that scale \rightarrow simulated directly
 - **phenomena below** that scale \rightarrow described by (heuristic) physical models

CFD Subchannel (SC)

subchannel

(between pins)

fine geometry

(wires, grids...)

TrioMC

LMFR Thermal-Hydraulics | 29/01/2020 | 20 / 34

microscopic (DNS)

fine (LES, RANS)

nothing (DNS)

turbulence (LES/RANS)

TrioCFD

A. Gerschenfeld

Introduction Issues

Modelling Scales Codes CFD Subchannel System Examples Application

Conclusion

CFD codes (OpenFOAM, Fluent, TrioCFD...)

- directly model the geometry of a fluid region
- predict turbulence by either :
 - simulating it directly (DNS) → very small meshes $(10^{-6}m)$
 - modelling the smallest fluctuations (LES)
 - \rightarrow somewhat larger meshes (10⁻⁵m)
 - modelling all fluctuations by an average dissipation (Reynolds-Averaged Navier-Stokes)
 → large meshes (10⁻⁴-10⁻³m)
- RANS lowers numerical costs, but :
 - the turbulence models must be validated (numerically or experimentally)
 - information on turbulent fluctuations is lost!
- typical computation (10-100 CPUs, 10s of days):
 - **DNS** \rightarrow 10cm of a single subchannel
 - **RANS** \rightarrow a few subassemblies MFR Thermal-Hydraulics | 29/01/2020 | 21 / 34

GENT International Forum

Subchannel codes (COBRA, TrioMC...)

- only one mesh per fluid area between pins → cannot simulate the effect of wire spacers
- \rightarrow physical models needed for :
 - friction caused by the wires
 - transverse mixing by these wires
 - turbulent heat transfer from the pins
 - → must be calibrated on experiments (nowadays) or on finer simulations (in the future: Hi2Low)
 - possible to obtain local fluid/pin temperature in the core at a reasonable cost :
 - **nominal state** \rightarrow full core in < 1s !
 - transients \rightarrow a few days \times 100 CPUs

GENT International Forum

System codes (RELAP, TRACE, CATHARE...)

- the original TH codes (RELAP-1 : 1966!)
- the coarsest mesh possibles :
 - pipes in 1D (multi-channel core)
 - volumes in 0D, sometimes in coarse 3D
- physical models for all phenomena: friction, heat transfer...
- but also additional models for full reactor simulation:
 - core: neutronics (usually point kinetics)
 - pumps, heat exchangers
 - all circuits : primary, intermediate...
- \Rightarrow can compute a complete reactor transient...
 - ... with low numerical cost! 15 min × 1 core

LMFR Thermal-Hydraulics

A. Gerschenfeld

Introduction

Issues

Modelling Scales Codes

Examples

Application

Conclusion

Typical uses of TH codes

Safety transients:

need to model complete reactor \rightarrow system scale (with maybe some post-processing to obtain local quantities)

Core design:

need to minimize pin temperature over complete core \rightarrow subchannel scale (maybe with some CFD to check local effects \rightarrow hot spots above wires, etc.)

■ Geometry-dependant phenomena for new designs → CFD stratification in hot/cold pool → RANS thermal fluctuations on UCS → LES

Application

ssues

Context

Solutions Results

DHR

Modelling natural convection in LMRs

- natural convection is a global phenomenon \rightarrow natural choice system scale / STH (0D/1D/coarse 3D)
- but pool-type designs are favor complex 3D effects:
 - in large pools: jet behavior, stratification
 - in the core: radial heterogeneity in S/As, cooling by inter-wrapper flow
- \Rightarrow these are hard to predict at the system scale! either by physical models or explicit simulation

Simple approaches

- if there is no local \rightarrow global feedback: STH result \rightarrow local post-processing
- conservative hypotheses, if possible

Natural convection

Effect on decay heat removal

Competition between three paths :

- 1 normal primary circuit flow
- 2 convection loops between S/As
- 3 flow in the inter-wrapper gaps
- \Rightarrow only (1) can be modeled in STH!

How to model?

- STH approach :
 (2) miscalculated, (3) neglected
 - $\Rightarrow T_{core} \text{ overestimated (conservative)} \\ Q_{prim} \text{ overestimated (bad)}$
- ⇒ an approach including local feedbacks is needed

Natural convection

LMFR Thermal-Hydraulics

A. Gerschenfeld

Introduction Issues Modelling Application Context DHR Solutions CFD Coupling Results Validation Conclusion

Model everything in CFD

can be done (at CRS4, Framatome...), but :

1 must recode and validate models already in STH :

- point kinetics
- pumps
- etc...
- 2 CFD mesh everywhere, even if not needed \rightarrow extra computational cost

Code coupling

- reuse existing codes and models:
 - STH, subchannel inside S/As, CFD in the pools...
- must interface the codes together
- algorithm needed to ensure a consistent global simulation

Natural convection / Code coupling

Thermal coupling

- in CFD : boundary conditions
 - hydraulic : uniform velocity
 - thermal : external temperature taken from STH
- in STH : imposed temperatures at the meshes inside the domain

Hydraulic coupling

- in CFD : imposed flow
- \Rightarrow STH computes the flowrate $Q \rightarrow$ what feedback?
 - to obtain the right Q, the STH outside the domain must "see" the ΔP from the CFD
- $\Rightarrow \text{ momentum source term F inside} \\ \text{the overlapped domain so that } \Delta P_{STH} \simeq \Delta P_{CFD}$

LMFR Thermal-Hydraulics | 29/01/2020 | 30 / 34

Natural convection / Validation

Introduction Overview Combined effects

LMFR Thermal-**Hydraulics**

A. Gerschenfeld

ssues Modelling Application Context DHR Solutions Results Validation

Integral

Conclusion

SIT : System and Industrial Tests

- all physical models introduced must be established experimentally:
 - from nothing for DNS CFD...
 - to everything for the system scale!
 - \rightarrow validation of the physical models
- because of the non-linearities of thermal-hydraulics, interactions between phenomena may produce new effects \rightarrow which must also be validated!
- leads to a hierarchy of experiments :
 - separate effect tests (skipped here): study one phenomenon in detail
 - combined effect tests:
 - study interactions (requires large experiments)
 - system/industrial tests (integral validation): everything in a reactor case

Natural convection / Validation

LMFR Thermal-Hydraulics

A. Gerschenfeld

Introduction Issues Modelling Application Context DHR

Solutions Results

Validation

Overview

Combined effects

Integral

Conclusion

Combined effects

1 impact of 3D effects on natural convection:

- analytical: TALL-3D (KTH)
- **more integral:** CIRCE (ENEA \leftarrow ALFRED)
- reactor similarity: E-SCAPE (SCK/CEN ← MYRRHA)
- **2** coupling between S/As and inter-wrapper flow:
 - analytical: THEADES (KIT)
 - coupled to hot pool DHR: PLANDTL-1/2 (JAEA)
- **3** both together: possible in large LM experiments
 - \rightarrow requires simulated S/As in pool

CLEAR-S (China)

Natural convection / Validation

GENT International Forum

Integral scale (public availability)

- **1 PHENIX** end-of-life tests:
 - **natural convection** \rightarrow **NC** test (IAEA/EU)
 - cold pool 3D effects \rightarrow dissymetric test (EU/GIF)

2 EBR-II tests:

- (U)LOF \rightarrow SHRT-17/45R (IAEA)
- ULOHS \rightarrow BOP-301/302R (GIF)

3 FFTF tests:

- ULOF → LOFWOS#13 (IAEA)
 - \rightarrow benchmark in progress

IAEA and GIF play a key role!

Conclusion

LMFR Thermal-Hydraulics

A. Gerschenfeld

Introduction

Issues

Modelling

Application

Conclusion

- LMRs give rise to many interesting thermal-hyhdraulics phenomena
 - \rightarrow we need to describe them:
 - in normal operation
 - and in accidental scenarios
- **range** of codes, according to **modelling scale**:
 - 100% simulation \rightarrow DNS CFD (in single-phase)
 - then LES (preserves fluctuations) and RANS CFD (destroys fluctuations)
 - then subchannel
 - system scale (100% modelling)
- in many cases, a single code will be suitable for a given study
 - **I** local 3D phenomena: with fluctuations \rightarrow LES CFD, without \rightarrow RANS CFD
 - **assembly TH** : single $S/A \rightarrow CFD$, whole core \rightarrow subchannel
 - reactor transients \rightarrow STH
- however, some cases may be unsuitable for a single scale → in that case, code coupling is a possibility!
- most of the work lies in validating the physical models

Upcoming Webinars

25 February 2020 (8 pm US EST)	SFR Safety Design Criteria (SDC) and Safety Design Guidelines(SDGs)	Mr. Shigenobu Kubo, JAEA, Japan
26 March 2020	MicroReactors: A Technology Option for Accelerated Innovation	Dr. DV Rao, LANL, USA and Dr. Jess Gehin, INL, USA
29 April 2020	GIF VHTR Hydrogen Production Project Management Board	Dr. Sam Suppiah, CNL, Canada