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Contributions to the GIF 

Japanese Chairmanship since end 

of 2009 (3 year term): 
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GFR – Gas-Cooled Fast Reactor (System Arrangement) 

LFR – Lead-Cooled Fast Reactor (MOU) 

MSR – Molten Salt Reactor (MOU) 

SFR – Sodium-Cooled Fast Reactor (SA) 

SCWR – Supercritical Water-Cooled Reactor (SA) 

VHTR – Very-High-Temperature Reactor (SA) 

www.gen-4.org  
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Motivation for Gas Cooled Fast Reactors  

• Fast reactors are important for the sustainability of nuclear power: 

– More efficient use of fuel 

– Reduced volumes and radio-toxicity of high level waste 

• Sodium cooled fast reactors are the shortest route to FR deployment, but: 

– The sodium coolant has some undesirable features: 

» Chemical compatibility, void coefficient of reactivity, restricted core outlet 

temperature to avoid sodium boiling. 

• Gas cooled fast reactors do not suffer from any of the above: 

– Chemically inert, void coefficient is small (but still positive), single phase coolant 

eliminates boiling. 

– Allows high temperature operation without the corrosion and coolant radio-toxicity 

problems associated with heavy liquid metal reactors (Pb-Bi and pure Pb). 

• But … 

– Gaseous coolants have little thermal inertia – rapid heat-up of the core following loss of 

forced cooling; 

– High density fuels and claddings sustaining extreme temperatures and burnups need to 

be designed 
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Generation IV  GFR 

• Helium coolant  

• Fast neutron spectrum 

• High outlet temperature 

• Back-up for SFR 

+ Transparent coolant 

+ High temperature/efficiency 

+ Strong Doppler effect 

+ Weak void effect 

 - Decay heat removal (LOCA) 

- High power density 

- Low thermal inertia • Thermal power     2400 MWth 

• Coolant in/out     400°C/850°C 

• System pressure    7 Mpa 

 

Reactor
Primary

circulator
He-N2

compressor

He-N2

turbine
Main 

Heat exchanger
Steam turbine

CondenserFeed pump
Heat recovery

Steam generator

Indirect cycle conversion system 
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Status of GFR System Cooperation 

 

• GFR System Arrangement signed by Euratom, France, 

Switzerland and Japan 

 

• Project Arrangement on “Conceptual Design & Safety” 

signed by Euratom, France and Switzerland 

  

• Project  on “Fuel & Core Materials” in preparation  
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Specific GFR Challenge 1 : Fuel 
 • The greatest challenge facing the GFR is the development of robust high 

temperature refractory fuels and core structural materials,  

– Must be capable of withstanding the in-core thermal, mechanical and 
radiation environment.  

– High fissile material volume fraction of the fuel. 

• Candidate compositions for the fissile compound include carbides, nitrides, 
as well as oxides.  

• Favoured cladding material is SiCf/SiC in a pin formats 

• Practical issues:  

– How to encapsulate the fuel in pin – sealing of end plugs 

– How to do we combine metallic and ceramic components into a 
workable fuel sub-assembly ? 
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Fissile phase composition: comparison 

  

• Carbide preferred to nitride for its neutronic properties (N15 enrichment needed) 

• Both have relatively high volatility 

• Oxide back-up but with lower core performance 

• Metallic fuel discarded due to low melting point 

Carbide(U,Pu)C Nitride(U,Pu)N Oxide(U,Pu)O2 Metallic 

fuel(U,Pu,Zr) 

Theoritical density 

(g/cm3) 

13.58 14.32 11.5 14 

Melting point (°C) 2420 2780 2750 1080 

Thermal conductivity 

(W/m/K) 

16.5 

 

14.3 

 

2.9 

 

14 

 

Swelling 1,6% to 2%/at% 0,8%/at% 

Thermal stability Stable Stable until 

1600-1800°C 

Very stable 
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NIMPHE Irradiation (CEA – EURATOM) 

• Objective: Behavior of UPuN and UPuC irradiated in Phénix 

(but SFR conditions, steel cladding) 

• PIE made at CEA and JRC/ITU   

Nimphe 2:  Nitride 
Important fuel de-densification 

in pellet centre , restructuring. 

Central hole 

 

UPuN dissociation, Pu metal 

phase on clad  

Nimphe 2:  Carbide 
Gas bubbles at pellet 

center,  

without central hole 

  
                Fuel          Border Pu                 Clad   
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GFR Ceramic pin : a new design 

Fuel pellet : UPuC (high density & conductivity) 
 

Clad : SiCf/SiC (refractory & resistant) 
 

SiCf/SiC leak-tightness loss beyond elastic limit 
 Sandwich  SiCf/SiC / metal / SiCf/SiC 

 
Pellet-Clad interaction: 

  Improved by buffer (C and/or SiC) 
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The GFR fuel design : material interactions 
Fuel/buffer/liner/cladding interactions 

2000°C 
15 min 

UC1.04 / C / SiC / Ta / SiCf-SiC 

Courtesy of C. Guéneau (CEA) 

C 

UC1.04 

Moderate material interaction 

Fuel mostly preserved (buffer effect) 

C layer dissolved in fuel 
SiC layer mostly preserved 

Ta liner mostly preserved (no buffer effect) 

Cladding mostly preserved 

40 
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Perspectives for GFR fuel 

– Fissile materials:  

» Fabrication experience  

» Stability of irradiated UPuC at high temp.(1600-2000°C) 

» Introduction and effect of minor actinides on UPuC properties  

 

– Cladding + diffusion barrier or liner 

» Determination of composite behaviour under irradiation   

» High temp.(1600-2000°C) effects 

» Liner: tightness efficiency, fabrication, effect of damage and stresses 

» Thermo-chemical compatibility 

 

– Fuel element development 

» Pin optimisation under nominal and accidental conditions 

» Fabrication: prototype pin  

» Irradiation programmes  
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Specific GFR challenge 2: Decay Heat Removal (DHR) 

• HTR “conduction cool-down” will not work in a GFR 

– High power density, low thermal inertia, poor conduction path and 

small surface area of the core conspire to prevent conduction cooling. 

• A convective flow is required through the core at all times; 

– A natural convection flow is preferred following shutdown 

» This is possible when the circuit is pressurised 

– A forced flow is required immediately after shutdown when 

depressurised: 

» Gas density is too low to achieve enough natural convection 

– Heavy gas injection helps 

» Power requirements for the blowers are very large at low pressure  

• The primary circuit must be reconfigured to allow DHR 

– Main loop(s) must be isolated 

– DHR loop(s) must be connected across the core 
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Decay heat removal (DHR): original strategy 

• Redundant DHR loops  

• Dedicated blowers on helium side 

• Secondary water loop at 10 bar  

• Water loop working in natural convection 

• Final heat sink: water pools 

• Two barriers 

• Primary loop 

• Dedicated guard containment 
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He DHR loop

DHR HX

Water loop

Pool HX

Driving height
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Cut-away view of the 
2400 MWth  
indirect-cycle GFR 

re-fuelling 

equipment 

core 
control and shutdown 

rod drives 

steel reactor pressure 

vessel 

core barrel 

main heat exchanger 

(indirect cycle) 

Decay heat 

removal heat 

exchanger 
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Improvements to DHR strategy: 
 
Remove the requirement for an external  
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The ALLEGRO consortium 

 Joint preparatory work started in 2010 
with support of CEA 

 Signature of a MoU by AEKI Budapest 
(HU), UJV Rez (CZ), and VUJE Trnava (SK) 
in May 2010.  

 NCBJ (Poland) joined the consortium in 
June 2012. 

 Roadmap of construction has been 
prepared, with the main chapters 
General design, Safety principles, 
Licensing,  R&D, Governance and IPR 
issues. 

Note: AEKI is the “MTA Centre for Energy 
Research” (MTA-EK) since January 2012. 
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ALLEGRO: GFR demonstration 
& experimental facility 
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Status of ALLEGRO Project 

The design has been reviewed to take into account new safety criteria. 

A preliminary Conceptual Safety Features Review File (CSFRF) will be 
elaborated by 2012; an operational version is planned for end of 2013. 

Discussions with the Safety Authorities are underway. 

Several potential sites exist; site selection is planned for mid 2013 

Governance structure and financing issues are under discussion.  

The preparatory phase can be concluded by the end of 2013.  

The licensing & construction phase may start in 2014 if the design 
qualification and safety analysis have reached a sufficient level (agreement of 
the Safety Authority of the country of the site). 

Start of operation: 2023 - 2025  
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Conclusion 

•  There has been extensive progress made within the GIF GFR « Conceptual 

    Design and Safety » Project, with a focus on safety aspects 

 

•  GFR fuel development is critical for this reactor system; results  

   of R&D have been exchanged on a voluntary basis, since there is no 

   Fuel Project signed yet 

 

•  Although quite substantial, R&D efforts in Europe have been slowed down, 

   priority being given to SFR 

 

•  In parallel to the R&D shared in GIF, a new initiative (ALLEGRO 

   demonstrator) has been launched recently    
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Representatives in the GFR Steering Committee 

France: J.-C. Garnier, P. Guédeney (CEA) 

 

Japan: T. Mizuno,  N. Uto (JAEA) 

 

Switzerland: W. Hoffelner, K. Mikityuk (PSI) 

 

OECD/NEA: H. Paillère (Secretary) 

 

EURATOM: Richard Stainsby (AMEC), Joseph Somers (JRC) 

Thank you for your contribution to the progress of the GFR R&D 


