

Generation IV International Forum

John E. Kelly Deputy Assistant Secretary for Nuclear Reactor Technologies Office of Nuclear Energy U.S. Department of Energy

January 2014

Genesis of Generation IV Concept

In 1999, low public and political support for nuclear energy

• Oil and gas prices were low

USA proposed a bold initiative in 2000

- The vision was to leapfrog LWR technology and collaborate with international partners to share R&D on advanced nuclear systems
- 9 Countries and EU joined USA in developing the initiative
- Oil prices jumped soon thereafter

Gen IV concept defined via technology goals and legal framework

- Technology Roadmap released in 2002
 - 2 year study with more than 100 experts worldwide
 - Nearly 100 reactor designs evaluated and down selected to 6 most promising concepts
- First signatures collected on Framework Agreement in 2005; first research projects defined in 2006

"This may have been the first time that the world came together to decide on a fission technology to develop together."

William Magwood IV, First Chairman of the Generation IV International Forum

Generation IV Goals

Sustainability

- Long term fuel supply
- Minimize waste and long term stewardship burden

Safety & Reliability

- Very low likelihood and degree of core damage
- Eliminate need for offsite emergency response

Economics

- Life cycle cost advantage over other energy sources
- Financial risk comparable to other energy projects
- Proliferation Resistance & Physical Protection
 - Unattractive materials diversion pathway
 - Enhanced physical protection against terrorism

International Thirteen Current Members of **Generation IV**

	Argentina*		Republic of Korea
	Brazil*	-	Russian Federation
	Canada		Republic of South Africa
*:	People's Republic of China	•	Switzerland
\circ	Euratom	*	United Kingdom*
	France		United States
٠	Japan		*Non-active member

Methodology Working Groups

System Steering Committees

Generation IV International Forum

Integral part of the closed fuel cycle

Can either burn actinides or breed fissile material

Designs being developed

- ASTRID (France)
- JSFR (Japan)
- PGSFR (Korea)
- BN-1200 (Russia)

BN-800 (Russia)

- 2014 Start-up expected
- 2015 Fully operational

R&D focus

- Analyses and experiments that demonstrate safety approaches
- High burn-up minor actinide bearing fuels
- Develop advanced components and energy conversion systems

500 - 550 °C

Lead Fast Reactor

- Lead is not chemically reactive with air or water and has lower coolant void reactivity
 Three design thrusts:

 European Lead Cooled Fast Reactor (Large, central station)
 European Cooled Fast Reactor (Large, central station)
 - Russian BREST-OD-300 (Medium size)
 - SSTAR (Small Transportable Reactor)
 - R&D focus on materials corrosion and safety

Gas-cooled Fast Reactor

High temperature, inert coolant and fast neutrons for a closed fuel cycle

- Fast spectrum enables extension of uranium resources and waste minimization
- High temperature enables non-electric applications
- Non-reactive coolant eliminates material corrosion

Very advanced system

• Requires advanced materials and fuels

Key technical focus:

- SiC clad carbide fuel
- High temperature components and materials

Very High Temperature Reactor

- High temperature enables non-electric applications
- Goal reach outlet temperature of 1000°C, with near term focus on 700-950°C
- Reference configurations are the prismatic and the pebble bed
 - Designed to be "walk away safe"
- R&D focus on materials and fuels
 - Develop a worldwide materials handbook
 - Benchmarking of computer models
 - Shared irradiations
 - Confirmed excellent performance of UO₂ TRISO
- Japan HTTR in operation
- China HTR-PM demonstration plant under construction

Supercritical Water-Cooled Reactor

- Merges GEN-III+ reactor technology with advanced supercritical water technology used in coal plants
- Operates above the thermodynamic critical point
 - (374° C, 22.1 MPa) of water
- Fast and thermal spectrum options
- Key technology focus:
 - Materials, water chemistry, and radiolysis
 - Thermal hydraulics and safety to address gaps in SCWR heat transfer and critical flow databases
 - Fuel qualification

Molten Salt Reactor

High temperature system

• High temperature enables non-electric applications

On-line waste management

Design Options

- Solid fuel with molten salt coolant
- Fuel dissolved in molten salt coolant

Key technical focus

- Neutronics
- Materials and components
- Safety and safety systems
- Liquid salt chemistry and properties
- Salt processing

Generation IV system development in the period through 2013

	*	*:						÷		
Generation IV Systems	Canada	China	France	Japan	Korea	Russia	South Africa	Switzer- land	USA	EU
Sodium- cooled Fast Reactor (SFR)										
Very-high Temperature Gas-cooled Reactor (VHTR)										
Gas-cooled Fast Reactor (GFR)										
Supercritical- water cooled Reactor (SCWR)										
Lead-cooled Fast Reactor (LFR)										
Molten Salt Reactor (MSR)										

Participating member, signatory of a System Arrangement or a Project Arrangement at some point during the period. This table does not necessarily reflect the status of participation as of 1 January 2014.

• Over the last decade Gen IV has had major accomplishments

- Legal framework established for collaboration
- Collaborative projects started with significant R&D investment worldwide
- Prototype demonstrations are being designed and/or built
 - SFR (France and Russia)
 - VHTR (China)
- Much still needs to be done before Gen IV systems are a reality
 - Continue R&D on Gen IV systems
 - Develop advance research facilities
 - Engage industry on the design of Gen IV systems
 - Develop the workforce for the future

International Forum 111