

Characterization of 233U for Thorium Fuel Cycle Safeguards

Ms. Madeline Lockhart North Carolina State University, USA

18 December 2023

LA-UR-23-33347

NATIONAL NUCLEAR **Pacific Northwest**

Some Housekeeping Items

To Ask a Question

<u>|||||||||||||||</u>

 \leftarrow

 \mathscr{L}

 \mathbf{F}

U

Click Here

To Open the Go To Webinar Control Panel

Characterization of 233U for Thorium Fuel Cycle Safeguards

Ms. Madeline Lockhart North Carolina State University, USA

18 December 2023

LA-UR-23-33347

NC STATE UNIVERSITY

Meet the Presenter: Madeline Lockhart

- 4th year PhD Student at North Carolina State University
- Nuclear Nonproliferation and International Safeguards (NNIS) Fellow
- Undergraduate and Graduate Research Assistant at Los Alamos National Laboratory (2015 – 2023)
- Visiting scientist at the European Commission Joint Research Centre in Ispra, Italy (October 2023 – April 2024)
- Bachelor's degree in physics from Texas Tech University

email: mllockha@ncsu.edu

What are Nuclear Safeguards?

DEFINITION

a set of technical measures applied by the IAEA on nuclear material and activities

OBJECTIVE

to deter the spread of nuclear weapons by the early detection of the misuse of nuclear material or technology

Safeguards Development Timeline

Worrall, Louise G., et al. *Safeguards Technology for Thorium Fuel Cycles: Research and Development Needs Assessment and Recommendations*. United States: N. p., 2021. Web. doi:10.2172/1818724.

Safeguards for the Thorium Fuel Cycle

- Proliferation detection R&D is needed so that the detection toolkit (safeguards, remote detection, etc.) is ready to monitor thorium fuel cycle activities
- Advanced reactor designer needs to think about safeguards during the design process, not only when they are looking to export
- If a material is "self-shielding" or "proliferation resistant", it is not exempted from safeguards
- Characterization of ^{233}U is important for safeguards and nuclear material accounting and control (NMAC)

R&D Needs Assessment

Understand the R&D that is necessary to transition the current safeguards technology toolkit to meet the verification needs of thorium fuel cycles

- Identify leading candidate thorium fuel cycles and their characteristics that impact safeguards technology
- Provides the scientific basis for **strengthening existing instrumentation capabilities** or **developing new instrumentation** that may be needed to fill any potential capability gaps within the international nuclear safeguards community to properly verify declarations of any 232Th and 233U bearing materials

How is 233U produced?

Thorium-232 captures a neutron, becoming Thorium-233

Protactinium-233 undergoes

Why do we care about 233U?

SIGNIFICANT QUANTITY (SQ)

"the approximate amount of nuclear material for which the possibility of manufacturing a nuclear explosive device cannot be excluded" *-IAEA Safeguards Glossary 2022*

DIRECT USE MATERIALS

"nuclear material that can be used for the manufacture of nuclear explosive devices without transmutation or further enrichment" *-IAEA Safeguards Glossary 2022*

How is SNM characterized?

SPECIAL NUCLEAR MATERIAL (SNM)

plutonium, **uranium-233**, or uranium enriched in the isotopes uranium-233 or uranium-235, but does not include source material

Nondestructive Assay (NDA) Methods

Gamma X

232U contamination dominates the gamma spectra

Sources are often in lead shielding

Neutron √

In oxide form, 233 U has measurable neutrons from (α,n) reactions.

Active interrogation, used to measure 235U, also works with 233U

Neutron NDA

- Coincidence counting methods
	- Passive neutron coincidence counting
	- Active neutron coincidence counting using AmLi neutron source
- Time and Energy based signatures **Oskar Searfus, University of Michigan**
	- Delayed Neutron (DN), differential die away (DDA), passive neutron spectroscopy

Instrumentation

POULD OF

Active Well Coincidence Counter (AWCC)

- LV-AWCC
- Traditional ³He Well Counter
- 48 ³He tubes in 2 rings
- Passive and Active
- Removable Cd liner
- Thermal and Fast mode

GEN IV International Forum

JSR-15

- Traditional Shift Register
- Used by the IAEA for verification measurements
- Predetermined analysis parameters
- International Neutron Coincidence Counting (INCC)

3000

Advanced List Mode Module (ALMM)

- List mode data acquisition
- Record the pulse train
	- Time and channel for each detection event
- Allows for additional analysis methods & techniques
- Two channels: inner and outer rings of the detector

233U Sources

Radiation Signature Training Devices (RSTD)

- Made for DHS
- Individual source 'tiles', ~2 g each
- Total of 40 individual 233 U oxide sources
- HEU sources also available for simulations of 233U/235U ratios

Traditional Mass Verification for 235U

- 1. Perform active measurements with AmLi sources
- 2. Build a calibration curve with representative samples
- 3. Use curve and doubles count rate to determine mass

Active Doubles Calibration – Thermal Mode (no Cd)

Passive Calibration Curves

Active Doubles Simulation

simulations performed by Richard Reed at ORNL

Active Doubles Calibration – Fast Mode (with Cd)

nternational GE Forum Expertise | Collaboration | Excellence

Quantification of an "unknown" source

Perform passive and active measurements of the item

Passive measurement w/out Cd (thermal mode) Singles Rate: 178.42 ± 0.41

Active measurement w/out Cd (thermal mode) Doubles Rate: 317.07 ± 3.94

Use calibration curves to determine the fissile mass and 233U mass Perform passive and Use calibration curves to

active measurements

of the item

of the item

and $\frac{2330 \text{ m}^3}{\text{ m}}$

Fissile mass (g)

Propagate uncertainty from

Known 233 U mass = **71.85 g** Measured 233 U mass = **73.24 ± 0.18 g**

evidence of additional induced fission in ²³⁵U

Known total fissile mass = $109.34 g$ Calculated fissile mass = 108.44 ± 2.04 g

Conclusion

- Development of safeguards techniques for 233U is needed
- Neutron NDA techniques show promise to address this need
- Methods are under development to utilize combinations of neutron signatures to determine the composition and mass of materials containing ^{233}U and ^{235}U
- Characterization of materials containing ^{233}U requires the extension of current models and methods used for Pu and 235U in traditional safeguards

Upcoming Webinars

