

Characterization of ²³³U for Thorium Fuel Cycle Safeguards

Ms. Madeline Lockhart North Carolina State University, USA

18 December 2023

LA-UR-23-33347

Pacific Northwest

Some Housekeeping Items

Ŀ	Listen through your computer	Please select the "mic and speakers" radio button on the right-hand audio and pane display		
2	Technical Difficulties	Search the Go To Webinars Support: https://support.goto.com/webinar		
?	To ask a question	Select the "Questions" pane on your screen and type in your question		
	Share with others or watch it again	A video/audio recording of the webinar and the slide deck will be made available at <u>www.gen-4.org</u>		
Q	Please take the survey	A brief online survey will follow the webinar.		
GENUE International Expertise Collaboration Excellence				

To Ask a Question

Click Here

To Open the Go To Webinar Control Panel

¢

Ź

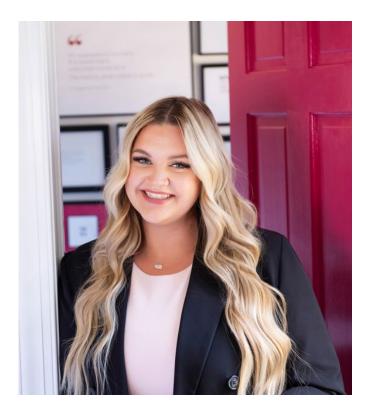
ß

J

Characterization of ²³³U for Thorium Fuel Cycle Safeguards

Ms. Madeline Lockhart North Carolina State University, USA

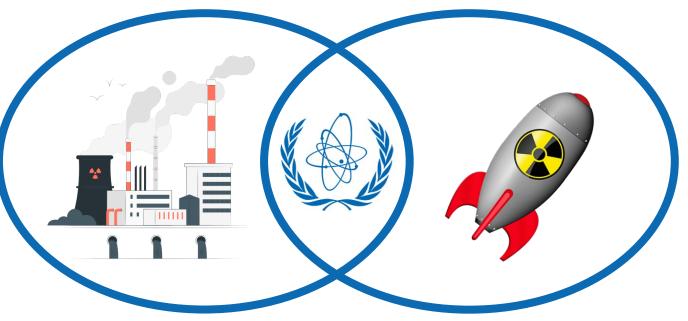
18 December 2023


LA-UR-23-33347

Meet the Presenter: Madeline Lockhart

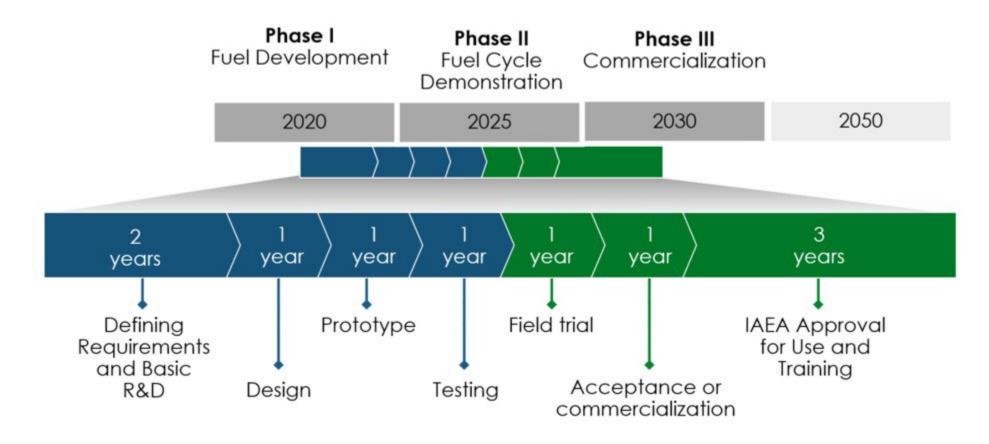
- 4th year PhD Student at North Carolina State University
- Nuclear Nonproliferation and International Safeguards (NNIS) Fellow
- Undergraduate and Graduate Research Assistant at Los Alamos National Laboratory (2015 – 2023)
- Visiting scientist at the European Commission Joint Research Centre in Ispra, Italy (October 2023 – April 2024)
- Bachelor's degree in physics from Texas Tech University

email: mllockha@ncsu.edu


What are Nuclear Safeguards?

DEFINITION

a set of technical measures applied by the IAEA on nuclear material and activities


OBJECTIVE

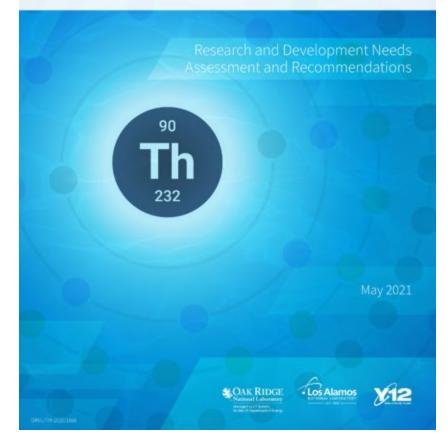
to deter the spread of nuclear weapons by the early detection of the misuse of nuclear material or technology

Safeguards Development Timeline

Worrall, Louise G., et al. *Safeguards Technology for Thorium Fuel Cycles: Research and Development Needs Assessment and Recommendations*. United States: N. p., 2021. Web. doi:10.2172/1818724.

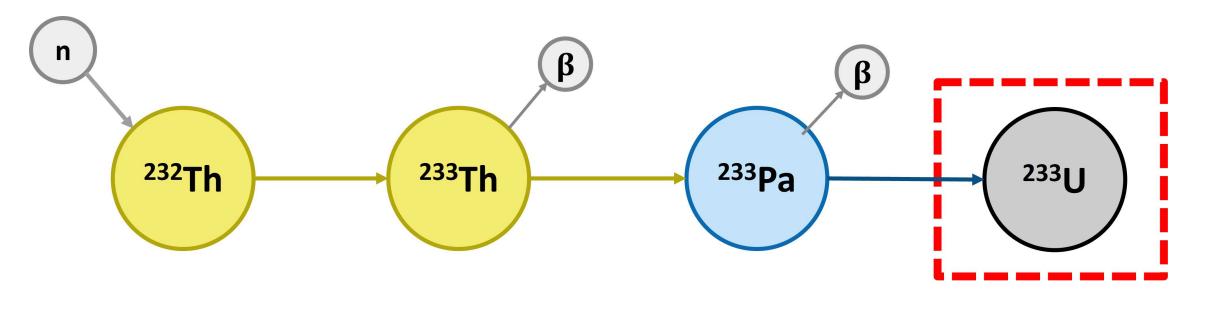
Safeguards for the Thorium Fuel Cycle

- Proliferation detection R&D is needed so that the detection toolkit (safeguards, remote detection, etc.) is ready to monitor thorium fuel cycle activities
- Advanced reactor designer needs to think about safeguards during the design process, not only when they are looking to export
- If a material is "self-shielding" or "proliferation resistant", it is not exempted from safeguards
- Characterization of ²³³U is important for safeguards and nuclear material accounting and control (NMAC)

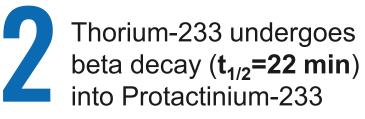


R&D Needs Assessment

Understand the R&D that is necessary to transition the current safeguards technology toolkit to meet the verification needs of thorium fuel cycles


- Identify leading candidate thorium fuel cycles and their characteristics that impact safeguards technology
- Provides the scientific basis for strengthening existing instrumentation capabilities or developing new instrumentation that may be needed to fill any potential capability gaps within the international nuclear safeguards community to properly verify declarations of any ²³²Th and ²³³U bearing materials

Safeguards Technology for Thorium Fuel Cycles



How is ²³³U produced?

Thorium-232 captures a neutron, becoming Thorium-233

Protactinium-233 undergoes beta decay ($t_{1/2}$ =27 d) into Uranium-233

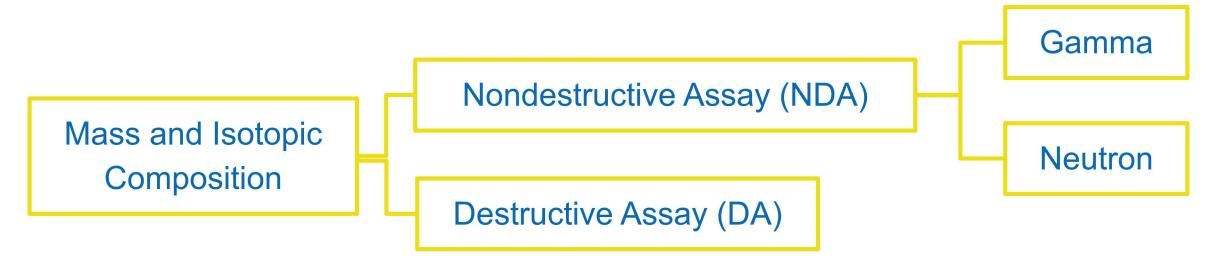
Why do we care about ²³³U?

SIGNIFICANT QUANTITY (SQ)

"the approximate amount of nuclear material for which the possibility of manufacturing a nuclear explosive device cannot be excluded" -IAEA Safeguards Glossary 2022

Pu (<80% ²³⁸ Pu)	8 kg	
233 U	8 kg ²³³ U	
HEU (>20% ²³⁵ U)	25 kg ²³⁵ U	

DIRECT USE MATERIALS


"nuclear material that can be used for the manufacture of nuclear explosive devices without transmutation or further enrichment" -IAEA Safeguards Glossary 2022

How is SNM characterized?

SPECIAL NUCLEAR MATERIAL (SNM)

plutonium, **uranium-233**, or uranium enriched in the isotopes uranium-233 or uranium-235, but does not include source material

Nondestructive Assay (NDA) Methods

Gamma X

²³²U contamination dominates the gamma spectra

Sources are often in lead shielding

Neutron 🗸

In oxide form, ²³³U has measurable neutrons from (α ,n) reactions.

Active interrogation, used to measure ²³⁵U, also works with ²³³U

Neutron NDA

- Coincidence counting methods
 - Passive neutron coincidence counting
 - Active neutron coincidence counting using AmLi neutron source
- Time and Energy based signatures Oskar Searfus, University of Michigan
 - Delayed Neutron (DN), differential die away (DDA), passive neutron spectroscopy

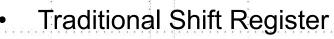
Nuclide	Half-life	SF multiplicity	SF yield [n·s ⁻¹ ·g ⁻¹]	Alpha yield [α·s ⁻¹ ·g ⁻¹]	(α,n) yield in oxide [n·s ⁻¹ ·g ⁻¹]
²³² Th	1.41×10 ¹⁰ years	2.14	>6×10 ⁻⁸	4.1×10 ³	2.2×10 ⁻⁵
²³² U	71.7 years	1.71	1.3×10 ⁰	8.0×10 ¹¹	1.5×10^{4}
²³³ U	1.59×10 ⁵ years	1.76	8.6×10 ⁻⁴	3.5×10 ⁸	4.8
²³⁴ U	2.45×10 ⁵ years	1.81	5.02x10 ⁻³	2.3x10 ⁸	3.0
²³⁵ U	7.04×10 ⁸ years	1.86	2.99×10 ⁻⁴	7.9×10 ⁴	7.1×10 ⁻⁴
²³⁸ U	4.468×10 ⁹ years	2.01	1.36×10 ⁻²	1.2×10 ⁴	8.3×10 ⁻⁵

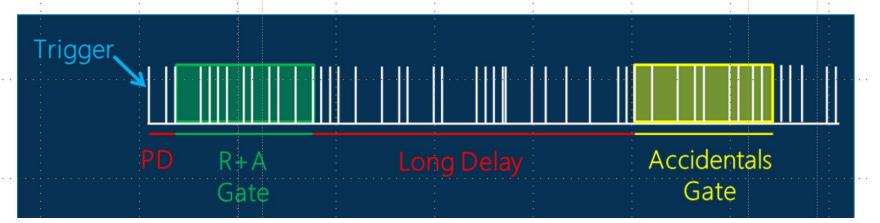
Instrumentation

0000

Active Well Coincidence Counter (AWCC)

- LV-AWCC
- Traditional ³He Well Counter
- 48 ³He tubes in 2 rings
- Passive and Active
- Removable Cd liner
- Thermal and Fast mode


Predelay	3 µs	
Gate length	64 µs	
High voltage	1700 V	
Die away time	50 µs	
Efficiency	32%	



GEN IV International Forum

JSR-15

- Used by the IAEA for verification measurements
- Predetermined analysis parameters
- International Neutron Coincidence Counting (INCC)

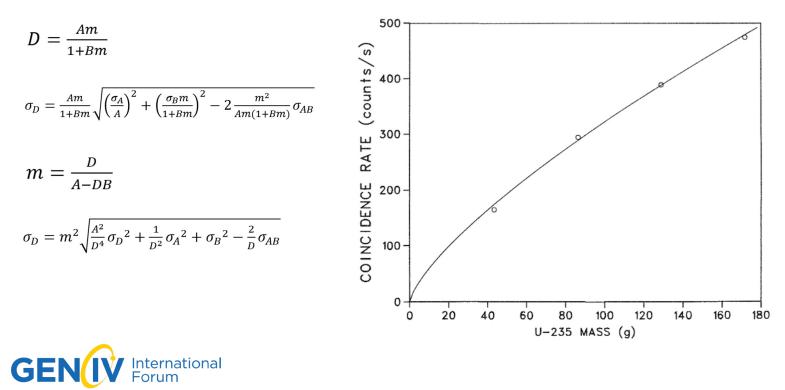
2200

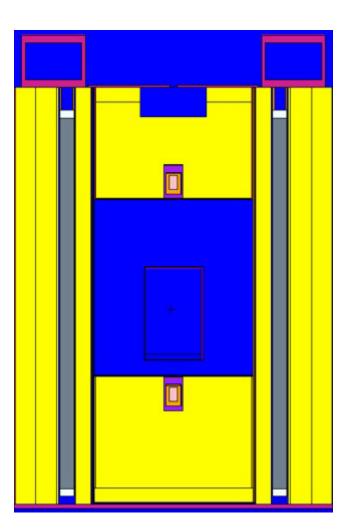
Advanced List Mode Module (ALMM)

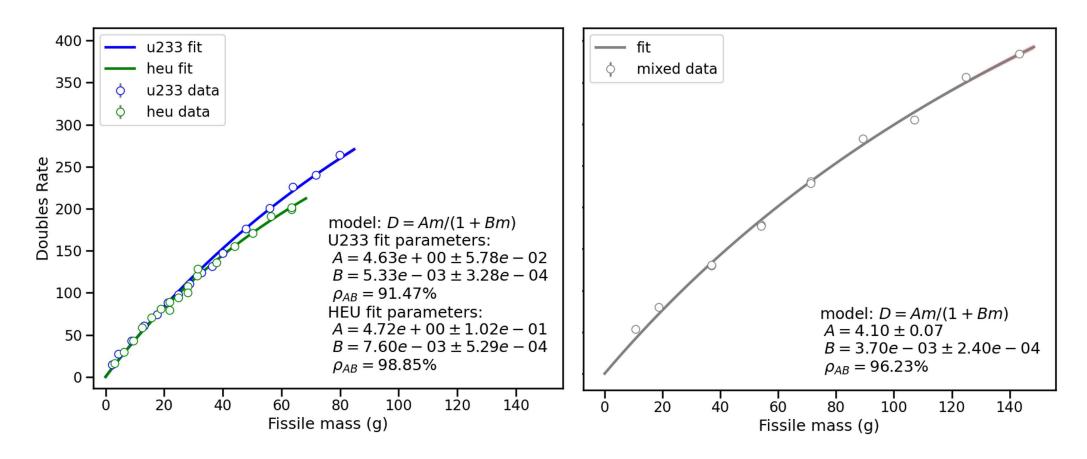
- List mode data acquisition
- Record the pulse train
 - Time and channel for each detection event
- Allows for additional analysis methods & techniques
- Two channels: inner and outer rings of the detector

²³³U Sources

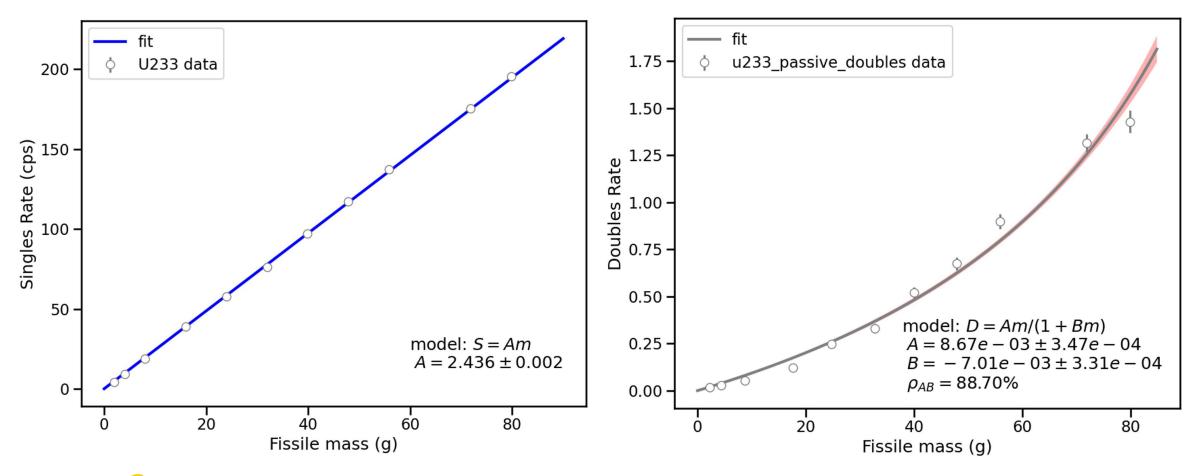
Radiation Signature Training Devices (RSTD)


- Made for DHS
- Individual source 'tiles', ~2 g each
- Total of 40 individual ²³³U oxide sources
- HEU sources also available for simulations of ²³³U/²³⁵U ratios

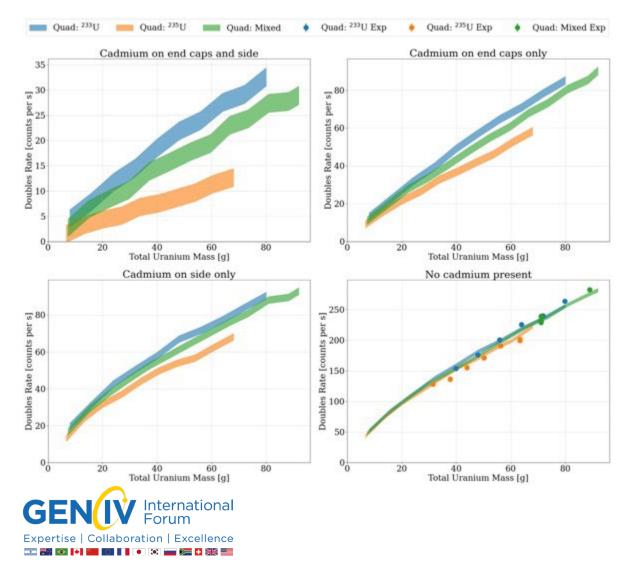


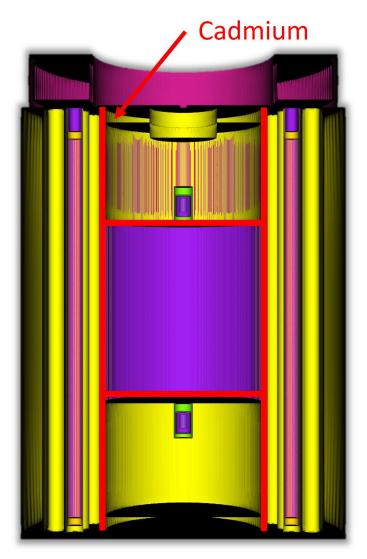

Traditional Mass Verification for ²³⁵U

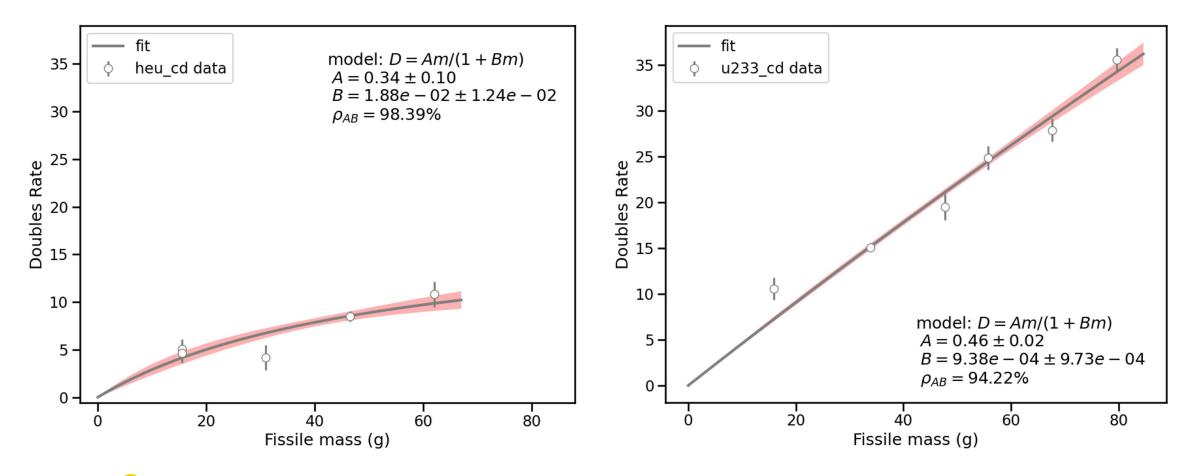
- 1. Perform active measurements with AmLi sources
- 2. Build a calibration curve with representative samples
- 3. Use curve and doubles count rate to determine mass



Active Doubles Calibration – Thermal Mode (no Cd)




Passive Calibration Curves

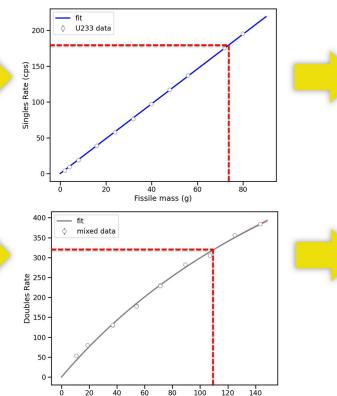

Active Doubles Simulation

simulations performed by Richard Reed at ORNL

Active Doubles Calibration – Fast Mode (with Cd)

GEN International Forum

Quantification of an "unknown" source


Perform passive and active measurements of the item

Passive measurement w/out Cd (thermal mode) Singles Rate: **178.42 ± 0.41**

Active measurement w/out Cd (thermal mode) Doubles Rate: **317.07 ± 3.94**

Use calibration curves to determine the fissile mass and ²³³U mass

Fissile mass (g)

36²³³U + 24 HEU triangles

Propagate uncertainty from measurements and fits for final mass estimate

Known ²³³U mass = **71.85 g** Measured ²³³U mass = **73.24 ± 0.18 g**

evidence of additional induced fission in ²³⁵U

Known total fissile mass = **109.34** g Calculated fissile mass = **108.44 ± 2.04** g

Conclusion

- Development of safeguards techniques for ²³³U is needed
- Neutron NDA techniques show promise to address this need
- Methods are under development to utilize combinations of neutron signatures to determine the composition and mass of materials containing ²³³U and ²³⁵U
- Characterization of materials containing ²³³U requires the extension of current models and methods used for Pu and ²³⁵U in traditional safeguards

Upcoming Webinars

Date	Title	Presenter
31 January 2024	Revolutionizing Nuclear Engineering Education: Developing Virtual Labs for Neutron Detection, Geiger Counter, and Reactor Experiments	Jonah Lau, Purdue University, USA
28 February 2024	The Analysis of the Reactivity Loss of the Phenix Core Cycles for the Experimental Validation of the DARWIN-FR Code Package	Victor Viallon, CEA, France
20 March 2024	Overview of Canadian R&D Capabilities to Support Advanced Reactors	Lori Walters, CNL, Canada

